{"title":"幂律指数和混合纳米颗粒浓度对水太阳能集热器内非牛顿混合纳米流体行为的影响","authors":"S. Mabrouk, T. Mahmoud, A. Kabeel, A. S. Rashed","doi":"10.1142/s0217984923502263","DOIUrl":null,"url":null,"abstract":"Nowadays, there is great attention given to solar collectors (SCs) for their important applications based on the advantages of nanotechnology and solar radiation. Hybrid nanofluid (HNF) is our first option due to its thermophysical properties that help in improving the overall performance, unlike other nanofluids. This paper gives a detailed novel analysis of SCs with the existence of Newtonian, power-law HNF in unsteady conditions and a three-dimensional model under the consideration of Brownian motion and thermophoresis parameter. In this research, the group transformation method (GTM) and similarity transformation steady state fluid dynamics are used to transform the mathematical model into a simpler system. This coupled system of ordinary differential equations with the related functions, dimensionless entropy generation and Bejan number is achieved at two cases of power-law index. The impact of involved parameters on velocity profile, temperature distribution, concentration field, entropy output of the system and Bejan number is depicted prominently by various graphs. The fluid velocity shows improvement with higher values of power-law index and shape factor, while it diminishes with magnetic parameter and Prandtl number. Enhancing the values of magnetic field and shape factor, results in increase of temperature characteristic which decreases with Prandtl number and power-law index. Increment in the concentration ratio parameter leads to maximize the entropy generation, whereas entropy generation diminishes with higher values of temperature ratio and magnetic parameter. The obtained results and the previously published work are compared qualitatively and quantitatively to each other to validate that the applied method is more efficient. It is predicted that the Nusselt number improves by 28.18% when the Prandtl number is taken range [Formula: see text]. The percentage of increasing in Sherwood number is noted to be 18.61% for range [Formula: see text] of Brownian motion parameter.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of power-law index and hybrid-nanoparticles concentrations on the behavior of non-newtonian hybrid nanofluid inside water solar collector\",\"authors\":\"S. Mabrouk, T. Mahmoud, A. Kabeel, A. S. Rashed\",\"doi\":\"10.1142/s0217984923502263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, there is great attention given to solar collectors (SCs) for their important applications based on the advantages of nanotechnology and solar radiation. Hybrid nanofluid (HNF) is our first option due to its thermophysical properties that help in improving the overall performance, unlike other nanofluids. This paper gives a detailed novel analysis of SCs with the existence of Newtonian, power-law HNF in unsteady conditions and a three-dimensional model under the consideration of Brownian motion and thermophoresis parameter. In this research, the group transformation method (GTM) and similarity transformation steady state fluid dynamics are used to transform the mathematical model into a simpler system. This coupled system of ordinary differential equations with the related functions, dimensionless entropy generation and Bejan number is achieved at two cases of power-law index. The impact of involved parameters on velocity profile, temperature distribution, concentration field, entropy output of the system and Bejan number is depicted prominently by various graphs. The fluid velocity shows improvement with higher values of power-law index and shape factor, while it diminishes with magnetic parameter and Prandtl number. Enhancing the values of magnetic field and shape factor, results in increase of temperature characteristic which decreases with Prandtl number and power-law index. Increment in the concentration ratio parameter leads to maximize the entropy generation, whereas entropy generation diminishes with higher values of temperature ratio and magnetic parameter. The obtained results and the previously published work are compared qualitatively and quantitatively to each other to validate that the applied method is more efficient. It is predicted that the Nusselt number improves by 28.18% when the Prandtl number is taken range [Formula: see text]. The percentage of increasing in Sherwood number is noted to be 18.61% for range [Formula: see text] of Brownian motion parameter.\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984923502263\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984923502263","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Influence of power-law index and hybrid-nanoparticles concentrations on the behavior of non-newtonian hybrid nanofluid inside water solar collector
Nowadays, there is great attention given to solar collectors (SCs) for their important applications based on the advantages of nanotechnology and solar radiation. Hybrid nanofluid (HNF) is our first option due to its thermophysical properties that help in improving the overall performance, unlike other nanofluids. This paper gives a detailed novel analysis of SCs with the existence of Newtonian, power-law HNF in unsteady conditions and a three-dimensional model under the consideration of Brownian motion and thermophoresis parameter. In this research, the group transformation method (GTM) and similarity transformation steady state fluid dynamics are used to transform the mathematical model into a simpler system. This coupled system of ordinary differential equations with the related functions, dimensionless entropy generation and Bejan number is achieved at two cases of power-law index. The impact of involved parameters on velocity profile, temperature distribution, concentration field, entropy output of the system and Bejan number is depicted prominently by various graphs. The fluid velocity shows improvement with higher values of power-law index and shape factor, while it diminishes with magnetic parameter and Prandtl number. Enhancing the values of magnetic field and shape factor, results in increase of temperature characteristic which decreases with Prandtl number and power-law index. Increment in the concentration ratio parameter leads to maximize the entropy generation, whereas entropy generation diminishes with higher values of temperature ratio and magnetic parameter. The obtained results and the previously published work are compared qualitatively and quantitatively to each other to validate that the applied method is more efficient. It is predicted that the Nusselt number improves by 28.18% when the Prandtl number is taken range [Formula: see text]. The percentage of increasing in Sherwood number is noted to be 18.61% for range [Formula: see text] of Brownian motion parameter.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.