基于生物启发算法的光伏组件建模与仿真

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY Inventions Pub Date : 2023-08-25 DOI:10.3390/inventions8050107
Lucas Lima Provensi, Renata Mariane de Souza, Gabriel Henrique Grala, R. Bergamasco, R. Krummenauer, C. M. Andrade
{"title":"基于生物启发算法的光伏组件建模与仿真","authors":"Lucas Lima Provensi, Renata Mariane de Souza, Gabriel Henrique Grala, R. Bergamasco, R. Krummenauer, C. M. Andrade","doi":"10.3390/inventions8050107","DOIUrl":null,"url":null,"abstract":"This research aims to employ and qualify the bio-inspired algorithms: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Differential Evolution Algorithm (DE) in the extraction of the parameters of the circuit equivalent to a photovoltaic module in the models of a diode and five parameters (1D5P) and two diodes and seven parameters (2D7P) in order to simulate the I-V characteristics curves for any irradiation and temperature scenarios. The peculiarity of this study stands in the exclusive use of information present in the module’s datasheet to carry out the full extraction and simulation process without depending on external sources of data or experimental data. To validate the methods, a comparison was made between the data obtained by the simulations with data from the module manufacturer in different scenarios of irradiation and temperature. The algorithm bound to the model with the highest accuracy was DE 1D5P, with a maximum relative error of 0.4% in conditions close to the reference and 3.61% for scenarios far from the reference. On the other hand, the algorithm that obtained the worst result in extracting parameters was the GA in the 2D7P model, which presented a maximum relative error of 9.59% in conditions far from the reference.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling and Simulation of Photovoltaic Modules Using Bio-Inspired Algorithms\",\"authors\":\"Lucas Lima Provensi, Renata Mariane de Souza, Gabriel Henrique Grala, R. Bergamasco, R. Krummenauer, C. M. Andrade\",\"doi\":\"10.3390/inventions8050107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to employ and qualify the bio-inspired algorithms: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Differential Evolution Algorithm (DE) in the extraction of the parameters of the circuit equivalent to a photovoltaic module in the models of a diode and five parameters (1D5P) and two diodes and seven parameters (2D7P) in order to simulate the I-V characteristics curves for any irradiation and temperature scenarios. The peculiarity of this study stands in the exclusive use of information present in the module’s datasheet to carry out the full extraction and simulation process without depending on external sources of data or experimental data. To validate the methods, a comparison was made between the data obtained by the simulations with data from the module manufacturer in different scenarios of irradiation and temperature. The algorithm bound to the model with the highest accuracy was DE 1D5P, with a maximum relative error of 0.4% in conditions close to the reference and 3.61% for scenarios far from the reference. On the other hand, the algorithm that obtained the worst result in extracting parameters was the GA in the 2D7P model, which presented a maximum relative error of 9.59% in conditions far from the reference.\",\"PeriodicalId\":14564,\"journal\":{\"name\":\"Inventions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/inventions8050107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions8050107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本研究旨在利用生物启发算法:粒子群优化(PSO)、遗传算法(GA)和差分进化算法(DE),在一个二极管和五参数(1D5P)和两个二极管和七参数(2D7P)模型中提取等效光伏组件电路的参数,以模拟任意辐照和温度情景下的I-V特性曲线。本研究的独特之处在于完全利用模块数据表中的信息进行完整的提取和仿真过程,而不依赖于外部数据来源或实验数据。为了验证这些方法的有效性,将模拟得到的数据与组件制造商在不同辐射和温度下的数据进行了比较。与模型绑定精度最高的算法为DE 1D5P,在接近参考条件下的最大相对误差为0.4%,远离参考条件下的最大相对误差为3.61%。另一方面,在2D7P模型中,遗传算法提取参数的效果最差,在远离参考条件下,遗传算法的相对误差最大,为9.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Simulation of Photovoltaic Modules Using Bio-Inspired Algorithms
This research aims to employ and qualify the bio-inspired algorithms: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Differential Evolution Algorithm (DE) in the extraction of the parameters of the circuit equivalent to a photovoltaic module in the models of a diode and five parameters (1D5P) and two diodes and seven parameters (2D7P) in order to simulate the I-V characteristics curves for any irradiation and temperature scenarios. The peculiarity of this study stands in the exclusive use of information present in the module’s datasheet to carry out the full extraction and simulation process without depending on external sources of data or experimental data. To validate the methods, a comparison was made between the data obtained by the simulations with data from the module manufacturer in different scenarios of irradiation and temperature. The algorithm bound to the model with the highest accuracy was DE 1D5P, with a maximum relative error of 0.4% in conditions close to the reference and 3.61% for scenarios far from the reference. On the other hand, the algorithm that obtained the worst result in extracting parameters was the GA in the 2D7P model, which presented a maximum relative error of 9.59% in conditions far from the reference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventions
Inventions Engineering-Engineering (all)
CiteScore
4.80
自引率
11.80%
发文量
91
审稿时长
12 weeks
期刊最新文献
PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis Aircraft Innovation Trends Enabling Advanced Air Mobility The Effect of Individual Hydrocarbons in the Composition of Diesel Fuel on the Effectiveness of Depressant Additives A Review of Available Solutions for Implementation of Small–Medium Combined Heat and Power (CHP) Systems Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1