添加产甲烷抑制剂的Sahiwal和Gir小牛瘤胃甲烷排放的评估

Methane Pub Date : 2023-05-07 DOI:10.3390/methane2020016
Rachala Dinesh Reddy, Parul Chaudhary, N. Tyagi, M. Mohini, G. Mondal
{"title":"添加产甲烷抑制剂的Sahiwal和Gir小牛瘤胃甲烷排放的评估","authors":"Rachala Dinesh Reddy, Parul Chaudhary, N. Tyagi, M. Mohini, G. Mondal","doi":"10.3390/methane2020016","DOIUrl":null,"url":null,"abstract":"Methane is one of the main greenhouse gases emitted by ruminants around the world. It is essential to investigate novel approaches to increasing animal production while reducing greenhouse gas emissions from ruminants. This study was conducted to examine the effect of methane inhibitors, such as nitrate, linseed oil, and anthraquinone, on nutritional digestibility, rumen fermentation processes, and methane emission in Sahiwal and Gir cattle calves. Twelve calves (6–12 months old), six of each Sahiwal and Gir breed, were selected and divided into four groups; Sahiwal control (C) and treated (T) calves; Gir control (C) and treated calves (T) of three calves each based on average body weight. Switch over a design was used as for periods 1 and 2. Animals in all groups were fed chopped oat fodder, wheat straw, and a concentrate mixture. Additionally, treated groups were fed a ration with potassium nitrate (1%), linseed oil (0.5%), and anthraquinone (4 ppm). The results revealed that the addition of methane inhibitors had no impact on nutrient intake and apparent digestibility. The levels of propionate, ammonia nitrogen, and total nitrogen were increased significantly (p < 0.05), while butyrate decreased in the treated groups of both breeds. However, there was no change in acetate and pH between the groups. Methane emission (g/d) was lower (p < 0.05) in the treated groups as compared to the control group. This study concludes that supplementation of methane inhibitors in calves feed can be utilized to lower methane emissions without affecting the intake and digestibility of nutrients. Combining diverse dietary mitigation strategies could be an effective way to mitigate methane emissions to reduce global warming while minimizing any negative impacts on ruminants to accomplish sustainable animal production.","PeriodicalId":74177,"journal":{"name":"Methane","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Rumen Methane Emission in Sahiwal and Gir Calves Supplemented with Combination of Methanogenic Inhibitors\",\"authors\":\"Rachala Dinesh Reddy, Parul Chaudhary, N. Tyagi, M. Mohini, G. Mondal\",\"doi\":\"10.3390/methane2020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methane is one of the main greenhouse gases emitted by ruminants around the world. It is essential to investigate novel approaches to increasing animal production while reducing greenhouse gas emissions from ruminants. This study was conducted to examine the effect of methane inhibitors, such as nitrate, linseed oil, and anthraquinone, on nutritional digestibility, rumen fermentation processes, and methane emission in Sahiwal and Gir cattle calves. Twelve calves (6–12 months old), six of each Sahiwal and Gir breed, were selected and divided into four groups; Sahiwal control (C) and treated (T) calves; Gir control (C) and treated calves (T) of three calves each based on average body weight. Switch over a design was used as for periods 1 and 2. Animals in all groups were fed chopped oat fodder, wheat straw, and a concentrate mixture. Additionally, treated groups were fed a ration with potassium nitrate (1%), linseed oil (0.5%), and anthraquinone (4 ppm). The results revealed that the addition of methane inhibitors had no impact on nutrient intake and apparent digestibility. The levels of propionate, ammonia nitrogen, and total nitrogen were increased significantly (p < 0.05), while butyrate decreased in the treated groups of both breeds. However, there was no change in acetate and pH between the groups. Methane emission (g/d) was lower (p < 0.05) in the treated groups as compared to the control group. This study concludes that supplementation of methane inhibitors in calves feed can be utilized to lower methane emissions without affecting the intake and digestibility of nutrients. Combining diverse dietary mitigation strategies could be an effective way to mitigate methane emissions to reduce global warming while minimizing any negative impacts on ruminants to accomplish sustainable animal production.\",\"PeriodicalId\":74177,\"journal\":{\"name\":\"Methane\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methane\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/methane2020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane2020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甲烷是世界上反刍动物排放的主要温室气体之一。研究提高动物产量同时减少反刍动物温室气体排放的新方法至关重要。本试验旨在研究甲烷抑制剂硝酸盐、亚麻籽油和蒽醌对Sahiwal和Gir牛犊牛营养物质消化率、瘤胃发酵过程和甲烷排放的影响。选取6-12月龄的小牛12头,分别为Sahiwal和Gir两个品种各6头,分为4组;对照小牛(C)和处理小牛(T);对照小牛(C)和处理小牛(T)的3头小牛,每头小牛基于平均体重。切换设计时使用的是周期1和2。各组分别饲喂碎燕麦饲料、麦秸和精料混合物。另外,处理组饲喂硝酸钾(1%)、亚麻籽油(0.5%)和蒽醌(4ppm)日粮。结果表明,甲烷抑制剂的添加对饲料的营养摄入量和表观消化率没有影响。2个品种的丙酸盐、氨氮和总氮水平均显著升高(p < 0.05),丁酸盐水平均降低。然而,两组间乙酸盐和pH值没有变化。各处理组甲烷排放量(g/d)显著低于对照组(p < 0.05)。综上所述,在犊牛饲料中添加甲烷抑制剂可在不影响营养物质摄入和消化率的情况下降低甲烷排放。结合多种饮食缓解策略可能是减少甲烷排放以减少全球变暖的有效方法,同时最大限度地减少对反刍动物的负面影响,以实现可持续的动物生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Rumen Methane Emission in Sahiwal and Gir Calves Supplemented with Combination of Methanogenic Inhibitors
Methane is one of the main greenhouse gases emitted by ruminants around the world. It is essential to investigate novel approaches to increasing animal production while reducing greenhouse gas emissions from ruminants. This study was conducted to examine the effect of methane inhibitors, such as nitrate, linseed oil, and anthraquinone, on nutritional digestibility, rumen fermentation processes, and methane emission in Sahiwal and Gir cattle calves. Twelve calves (6–12 months old), six of each Sahiwal and Gir breed, were selected and divided into four groups; Sahiwal control (C) and treated (T) calves; Gir control (C) and treated calves (T) of three calves each based on average body weight. Switch over a design was used as for periods 1 and 2. Animals in all groups were fed chopped oat fodder, wheat straw, and a concentrate mixture. Additionally, treated groups were fed a ration with potassium nitrate (1%), linseed oil (0.5%), and anthraquinone (4 ppm). The results revealed that the addition of methane inhibitors had no impact on nutrient intake and apparent digestibility. The levels of propionate, ammonia nitrogen, and total nitrogen were increased significantly (p < 0.05), while butyrate decreased in the treated groups of both breeds. However, there was no change in acetate and pH between the groups. Methane emission (g/d) was lower (p < 0.05) in the treated groups as compared to the control group. This study concludes that supplementation of methane inhibitors in calves feed can be utilized to lower methane emissions without affecting the intake and digestibility of nutrients. Combining diverse dietary mitigation strategies could be an effective way to mitigate methane emissions to reduce global warming while minimizing any negative impacts on ruminants to accomplish sustainable animal production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Digestate from a Methane Fermentation Process for Supplying Water and Nutrients in Sweet Potato Cultivation in Sandy Soil Pathways toward Climate-Neutral Red Meat Production Recent Advances in the Use of Controlled Nanocatalysts in Methane Conversion Reactions Dry Reforming of CH4 Using a Microreactor A Study on the Heterogeneity and Anisotropy of the Porous Grout Body Created in the Stabilization of a Methane Hydrate Reservoir through Grouting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1