{"title":"异方差和非正态下的均值比较:进一步探索稳健均值建模","authors":"A. Counsell, R. Chalmers, R. Cribbie","doi":"10.22237/JMASM/1571659200","DOIUrl":null,"url":null,"abstract":"Comparing the means of independent groups is a concern when the assumptions of normality and variance homogeneity are violated. Robust means modeling (RMM) was proposed as an alternative to ANOVA-type procedures when the assumptions of normality and variance homogeneity are violated. The purpose of this study is to compare the Type I error and power rates of RMM to the trimmed Welch procedure. A Monte Carlo study was used to investigate RMM and the trimmed Welch procedure under several conditions of nonnormality and variance heterogeneity. The results suggest that the trimmed Welch provides a better balance of Type I error control and power than RMM.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparing Means under Heteroscedasticity and Nonnormality: Further Exploring Robust Means Modeling\",\"authors\":\"A. Counsell, R. Chalmers, R. Cribbie\",\"doi\":\"10.22237/JMASM/1571659200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparing the means of independent groups is a concern when the assumptions of normality and variance homogeneity are violated. Robust means modeling (RMM) was proposed as an alternative to ANOVA-type procedures when the assumptions of normality and variance homogeneity are violated. The purpose of this study is to compare the Type I error and power rates of RMM to the trimmed Welch procedure. A Monte Carlo study was used to investigate RMM and the trimmed Welch procedure under several conditions of nonnormality and variance heterogeneity. The results suggest that the trimmed Welch provides a better balance of Type I error control and power than RMM.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/JMASM/1571659200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1571659200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Comparing Means under Heteroscedasticity and Nonnormality: Further Exploring Robust Means Modeling
Comparing the means of independent groups is a concern when the assumptions of normality and variance homogeneity are violated. Robust means modeling (RMM) was proposed as an alternative to ANOVA-type procedures when the assumptions of normality and variance homogeneity are violated. The purpose of this study is to compare the Type I error and power rates of RMM to the trimmed Welch procedure. A Monte Carlo study was used to investigate RMM and the trimmed Welch procedure under several conditions of nonnormality and variance heterogeneity. The results suggest that the trimmed Welch provides a better balance of Type I error control and power than RMM.
期刊介绍:
The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.