{"title":"硅催化裂化电池热力学函数随温度变化的分子动力学研究","authors":"A. Bari, S. Rubaiee, Anas Ahmed, A. Masud","doi":"10.3329/JNAME.V14I2.30128","DOIUrl":null,"url":null,"abstract":"In modern days silicon is being extensively used in making electronic semiconductor-based chips and ICs. In this research, the change in different thermodynamic properties of silicon like lattice heat capacity, molar enthalpy and Debye temperature at constant pressure, with the change in temperature, has been investigated by using molecular dynamics (MD) simulation method. Knowing silicon thermodynamic functions are quite important, because many electronic companies are nowadays trying a lot to reduce the heat generated by their semiconductor chips as excessive heating of the chip not only warms up the device quickly but also reduces the chip life. The results obtained from this simulation help engineers to design electronic chips more efficiently. For simulation Accelrys Materials Studio (Version 5.0) software has been used. The simulation was run for silicon FCC diamond structured cell. The analysis tool used in the simulation is known as CASTEP (Cambridge Sequential Total Energy Package). This tool is specialized for performing molecular level thermodynamic analysis to generate data and graphs for the change in different temperature dependent properties of the molecular system. The interaction between silicon atoms was expressed by the Kohn-Sham potential and MD calculation was conducted on crystalline state of silicon at temperatures between 0 and 1000 K. Here, density function theory (DFT) based tool has been used to derive density of state relations. Results obtained by the simulation were compared with published experimental values and it was found that the simulation results were close to the experimental values.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V14I2.30128","citationCount":"0","resultStr":"{\"title\":\"A molecular dynamic study of change in thermodynamic functions of silicon FCC cell with the change in temperature\",\"authors\":\"A. Bari, S. Rubaiee, Anas Ahmed, A. Masud\",\"doi\":\"10.3329/JNAME.V14I2.30128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern days silicon is being extensively used in making electronic semiconductor-based chips and ICs. In this research, the change in different thermodynamic properties of silicon like lattice heat capacity, molar enthalpy and Debye temperature at constant pressure, with the change in temperature, has been investigated by using molecular dynamics (MD) simulation method. Knowing silicon thermodynamic functions are quite important, because many electronic companies are nowadays trying a lot to reduce the heat generated by their semiconductor chips as excessive heating of the chip not only warms up the device quickly but also reduces the chip life. The results obtained from this simulation help engineers to design electronic chips more efficiently. For simulation Accelrys Materials Studio (Version 5.0) software has been used. The simulation was run for silicon FCC diamond structured cell. The analysis tool used in the simulation is known as CASTEP (Cambridge Sequential Total Energy Package). This tool is specialized for performing molecular level thermodynamic analysis to generate data and graphs for the change in different temperature dependent properties of the molecular system. The interaction between silicon atoms was expressed by the Kohn-Sham potential and MD calculation was conducted on crystalline state of silicon at temperatures between 0 and 1000 K. Here, density function theory (DFT) based tool has been used to derive density of state relations. Results obtained by the simulation were compared with published experimental values and it was found that the simulation results were close to the experimental values.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/JNAME.V14I2.30128\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V14I2.30128\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V14I2.30128","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A molecular dynamic study of change in thermodynamic functions of silicon FCC cell with the change in temperature
In modern days silicon is being extensively used in making electronic semiconductor-based chips and ICs. In this research, the change in different thermodynamic properties of silicon like lattice heat capacity, molar enthalpy and Debye temperature at constant pressure, with the change in temperature, has been investigated by using molecular dynamics (MD) simulation method. Knowing silicon thermodynamic functions are quite important, because many electronic companies are nowadays trying a lot to reduce the heat generated by their semiconductor chips as excessive heating of the chip not only warms up the device quickly but also reduces the chip life. The results obtained from this simulation help engineers to design electronic chips more efficiently. For simulation Accelrys Materials Studio (Version 5.0) software has been used. The simulation was run for silicon FCC diamond structured cell. The analysis tool used in the simulation is known as CASTEP (Cambridge Sequential Total Energy Package). This tool is specialized for performing molecular level thermodynamic analysis to generate data and graphs for the change in different temperature dependent properties of the molecular system. The interaction between silicon atoms was expressed by the Kohn-Sham potential and MD calculation was conducted on crystalline state of silicon at temperatures between 0 and 1000 K. Here, density function theory (DFT) based tool has been used to derive density of state relations. Results obtained by the simulation were compared with published experimental values and it was found that the simulation results were close to the experimental values.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.