用聚类技术预测软件缺陷

Waheeda Almayyan
{"title":"用聚类技术预测软件缺陷","authors":"Waheeda Almayyan","doi":"10.5121/IJAIA.2021.12103","DOIUrl":null,"url":null,"abstract":"The purpose of software defect prediction is to improve the quality of a software project by building a predictive model to decide whether a software module is or is not fault prone. In recent years, much research in using machine learning techniques in this topic has been performed. Our aim was to evaluate the performance of clustering techniques with feature selection schemes to address the problem of software defect prediction problem. We analyzed the National Aeronautics and Space Administration (NASA) dataset benchmarks using three clustering algorithms: (1) Farthest First, (2) X-Means, and (3) self-organizing map (SOM). In order to evaluate different feature selection algorithms, this article presents a comparative analysis involving software defects prediction based on Bat, Cuckoo, Grey Wolf Optimizer (GWO), and particle swarm optimizer (PSO). The results obtained with the proposed clustering models enabled us to build an efficient predictive model with a satisfactory detection rate and acceptable number of features.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"12 1","pages":"39-54"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards Predicting Software Defects with Clustering Techniques\",\"authors\":\"Waheeda Almayyan\",\"doi\":\"10.5121/IJAIA.2021.12103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of software defect prediction is to improve the quality of a software project by building a predictive model to decide whether a software module is or is not fault prone. In recent years, much research in using machine learning techniques in this topic has been performed. Our aim was to evaluate the performance of clustering techniques with feature selection schemes to address the problem of software defect prediction problem. We analyzed the National Aeronautics and Space Administration (NASA) dataset benchmarks using three clustering algorithms: (1) Farthest First, (2) X-Means, and (3) self-organizing map (SOM). In order to evaluate different feature selection algorithms, this article presents a comparative analysis involving software defects prediction based on Bat, Cuckoo, Grey Wolf Optimizer (GWO), and particle swarm optimizer (PSO). The results obtained with the proposed clustering models enabled us to build an efficient predictive model with a satisfactory detection rate and acceptable number of features.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\"12 1\",\"pages\":\"39-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2021.12103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2021.12103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

软件缺陷预测的目的是通过建立预测模型来决定软件模块是否容易发生故障,从而提高软件项目的质量。近年来,在这个主题中使用机器学习技术进行了大量的研究。我们的目的是评估具有特征选择方案的聚类技术的性能,以解决软件缺陷预测问题。我们使用三种聚类算法分析了美国国家航空航天局(NASA)的数据集基准:(1)最远优先、(2)X均值和(3)自组织映射(SOM)。为了评估不同的特征选择算法,本文对基于蝙蝠、布谷鸟、灰太狼优化器(GWO)和粒子群优化器(PSO)的软件缺陷预测进行了比较分析。利用所提出的聚类模型获得的结果使我们能够建立一个高效的预测模型,该模型具有令人满意的检测率和可接受的特征数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Predicting Software Defects with Clustering Techniques
The purpose of software defect prediction is to improve the quality of a software project by building a predictive model to decide whether a software module is or is not fault prone. In recent years, much research in using machine learning techniques in this topic has been performed. Our aim was to evaluate the performance of clustering techniques with feature selection schemes to address the problem of software defect prediction problem. We analyzed the National Aeronautics and Space Administration (NASA) dataset benchmarks using three clustering algorithms: (1) Farthest First, (2) X-Means, and (3) self-organizing map (SOM). In order to evaluate different feature selection algorithms, this article presents a comparative analysis involving software defects prediction based on Bat, Cuckoo, Grey Wolf Optimizer (GWO), and particle swarm optimizer (PSO). The results obtained with the proposed clustering models enabled us to build an efficient predictive model with a satisfactory detection rate and acceptable number of features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1