Junyan Duan, Mykhaylo M. Malakhov, J. J. Pellett, I. Phadke, J. Barber, J. Blackwood
{"title":"白鼻综合征元群体模型的管理效果","authors":"Junyan Duan, Mykhaylo M. Malakhov, J. J. Pellett, I. Phadke, J. Barber, J. Blackwood","doi":"10.1111/nrm.12304","DOIUrl":null,"url":null,"abstract":"The fungal pathogen Pseudogymnoascus destructans (Pd) causes white‐nose syndrome (WNS), an emerging disease that affects North American bat populations during hibernation. Pd has rapidly spread throughout much of the continent, leading to mass mortality and threatening extinction in several bat species. While previous studies have proposed treatment methods, little is known about the impact of metapopulation dynamics on these interventions. We investigate how the movement of bats between populations could affect the success of five WNS control strategies by posing and analyzing a two‐population disease model. Our results demonstrate that vaccination will benefit from greater bat dispersal, but the effectiveness of treatments targeting fungal growth or disease progression can be expected to diminish. We confirm that successful control depends on the relative contributions of bat‐to‐bat and environment‐to‐bat contact to Pd transmission, and additionally find that the route of transmission can influence whether interpopulation exchange increases or decreases control efficacy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/nrm.12304","citationCount":"2","resultStr":"{\"title\":\"Management efficacy in a metapopulation model of white‐nose syndrome\",\"authors\":\"Junyan Duan, Mykhaylo M. Malakhov, J. J. Pellett, I. Phadke, J. Barber, J. Blackwood\",\"doi\":\"10.1111/nrm.12304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fungal pathogen Pseudogymnoascus destructans (Pd) causes white‐nose syndrome (WNS), an emerging disease that affects North American bat populations during hibernation. Pd has rapidly spread throughout much of the continent, leading to mass mortality and threatening extinction in several bat species. While previous studies have proposed treatment methods, little is known about the impact of metapopulation dynamics on these interventions. We investigate how the movement of bats between populations could affect the success of five WNS control strategies by posing and analyzing a two‐population disease model. Our results demonstrate that vaccination will benefit from greater bat dispersal, but the effectiveness of treatments targeting fungal growth or disease progression can be expected to diminish. We confirm that successful control depends on the relative contributions of bat‐to‐bat and environment‐to‐bat contact to Pd transmission, and additionally find that the route of transmission can influence whether interpopulation exchange increases or decreases control efficacy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/nrm.12304\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/nrm.12304\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12304","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Management efficacy in a metapopulation model of white‐nose syndrome
The fungal pathogen Pseudogymnoascus destructans (Pd) causes white‐nose syndrome (WNS), an emerging disease that affects North American bat populations during hibernation. Pd has rapidly spread throughout much of the continent, leading to mass mortality and threatening extinction in several bat species. While previous studies have proposed treatment methods, little is known about the impact of metapopulation dynamics on these interventions. We investigate how the movement of bats between populations could affect the success of five WNS control strategies by posing and analyzing a two‐population disease model. Our results demonstrate that vaccination will benefit from greater bat dispersal, but the effectiveness of treatments targeting fungal growth or disease progression can be expected to diminish. We confirm that successful control depends on the relative contributions of bat‐to‐bat and environment‐to‐bat contact to Pd transmission, and additionally find that the route of transmission can influence whether interpopulation exchange increases or decreases control efficacy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.