{"title":"基于灰度共现矩阵特征的肺癌计算机断层成像分类技术","authors":"Shankara Chikkalingaiah, Subbarao Anantha Padmanabha Rao Hari Prasad, Latha Dabbegatta Uggregowda","doi":"10.11591/ijece.v13i5.pp5135-5146","DOIUrl":null,"url":null,"abstract":"Lung cancer, which causes the majority of fatalities worldwide each year, is one of the deadliest diseases. The survival rate of cancer patients could be improved with better cancer detection methods. Image processing and machine learning have both been used to aid in lung cancer detection, but a method that both increase accuracy and increases a patient’s survival rate has yet to be identified. In an effort to find the most effective method for the accurate lung cancer recognition, this paper analyses and compares several classification algorithms. Lung computed tomography (CT) images are enhanced by removing noise using a median filter. For filtered image, threshold segmentation is used to segment it into distinct parts. From the segmented image different features are extracted using the grey level co-occurrence matrix (GLCM). several classification strategies, including support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), and decision tree (DT) methods, are used to classify lung images as malignant or normal based on the extracted features. Methods are evaluated based on a number of various performance measures, like accuracy, a precision, the recall, and the F1-Score. Based on the experimental outcomes, SVM outperforms other classification methods in accurately detecting lung cancer with an accuracy of 99.32%.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification techniques using gray level co-occurrence matrix features for the detection of lung cancer using computed tomography imaging\",\"authors\":\"Shankara Chikkalingaiah, Subbarao Anantha Padmanabha Rao Hari Prasad, Latha Dabbegatta Uggregowda\",\"doi\":\"10.11591/ijece.v13i5.pp5135-5146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer, which causes the majority of fatalities worldwide each year, is one of the deadliest diseases. The survival rate of cancer patients could be improved with better cancer detection methods. Image processing and machine learning have both been used to aid in lung cancer detection, but a method that both increase accuracy and increases a patient’s survival rate has yet to be identified. In an effort to find the most effective method for the accurate lung cancer recognition, this paper analyses and compares several classification algorithms. Lung computed tomography (CT) images are enhanced by removing noise using a median filter. For filtered image, threshold segmentation is used to segment it into distinct parts. From the segmented image different features are extracted using the grey level co-occurrence matrix (GLCM). several classification strategies, including support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), and decision tree (DT) methods, are used to classify lung images as malignant or normal based on the extracted features. Methods are evaluated based on a number of various performance measures, like accuracy, a precision, the recall, and the F1-Score. Based on the experimental outcomes, SVM outperforms other classification methods in accurately detecting lung cancer with an accuracy of 99.32%.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5135-5146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5135-5146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Classification techniques using gray level co-occurrence matrix features for the detection of lung cancer using computed tomography imaging
Lung cancer, which causes the majority of fatalities worldwide each year, is one of the deadliest diseases. The survival rate of cancer patients could be improved with better cancer detection methods. Image processing and machine learning have both been used to aid in lung cancer detection, but a method that both increase accuracy and increases a patient’s survival rate has yet to be identified. In an effort to find the most effective method for the accurate lung cancer recognition, this paper analyses and compares several classification algorithms. Lung computed tomography (CT) images are enhanced by removing noise using a median filter. For filtered image, threshold segmentation is used to segment it into distinct parts. From the segmented image different features are extracted using the grey level co-occurrence matrix (GLCM). several classification strategies, including support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), and decision tree (DT) methods, are used to classify lung images as malignant or normal based on the extracted features. Methods are evaluated based on a number of various performance measures, like accuracy, a precision, the recall, and the F1-Score. Based on the experimental outcomes, SVM outperforms other classification methods in accurately detecting lung cancer with an accuracy of 99.32%.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]