{"title":"中国气候区与外墙集成的四个太阳能制冷和发电(SCP)联合发电系统的技术和经济性能","authors":"Fei Lai, Dan Wu, Jinzhi Zhou, Yanping Yuan","doi":"10.1115/1.4063023","DOIUrl":null,"url":null,"abstract":"\n There has been an increasing interest in solar-driven combined energy supply systems for low-temperate applications, particularly those based on the Organic Rankine Cycle (ORC), Kalina Cycle (KC), or Trilateral Cycle (TLC). However, systems based on these thermodynamic cycles usually employ large area collectors that stand alone or are placed on the roof, without considering integration with the building facade. This research presents a solution to large-scale photothermal utilization integrated with facades for co-generated systems. The current study is the first to conduct performance and economic assessment for four novel solar cooling and power (SCP) co-generated systems driven by evacuated tube solar collectors (ETCs) or semi-transparent photovoltaic (STPV) integrated into the building facades. The suggested systems were simulated using TRNSYS to forecast their performance metrics when used in four Chinese cities with various climate zones. As indicators, a solar fraction (SF) and unit energy cost (UEC) was used to evaluate the technical and financial aspects of each system. The STPV-vapor compression cycle (VCC) system had the highest SF (100%, except Haikou), as well as the lowest UEC (0.211/kWh on average) among the four cities, according to the results. Among the three solar − thermal co − generation systems, ETC − ORC − VCC had the best performance (SF:37.9%, UEC:0.597/kWh on average).","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical and economic performance of four solar cooling and power (SCP) co-generated systems integrated with façades in Chinese climate zones\",\"authors\":\"Fei Lai, Dan Wu, Jinzhi Zhou, Yanping Yuan\",\"doi\":\"10.1115/1.4063023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There has been an increasing interest in solar-driven combined energy supply systems for low-temperate applications, particularly those based on the Organic Rankine Cycle (ORC), Kalina Cycle (KC), or Trilateral Cycle (TLC). However, systems based on these thermodynamic cycles usually employ large area collectors that stand alone or are placed on the roof, without considering integration with the building facade. This research presents a solution to large-scale photothermal utilization integrated with facades for co-generated systems. The current study is the first to conduct performance and economic assessment for four novel solar cooling and power (SCP) co-generated systems driven by evacuated tube solar collectors (ETCs) or semi-transparent photovoltaic (STPV) integrated into the building facades. The suggested systems were simulated using TRNSYS to forecast their performance metrics when used in four Chinese cities with various climate zones. As indicators, a solar fraction (SF) and unit energy cost (UEC) was used to evaluate the technical and financial aspects of each system. The STPV-vapor compression cycle (VCC) system had the highest SF (100%, except Haikou), as well as the lowest UEC (0.211/kWh on average) among the four cities, according to the results. Among the three solar − thermal co − generation systems, ETC − ORC − VCC had the best performance (SF:37.9%, UEC:0.597/kWh on average).\",\"PeriodicalId\":17124,\"journal\":{\"name\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063023\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Technical and economic performance of four solar cooling and power (SCP) co-generated systems integrated with façades in Chinese climate zones
There has been an increasing interest in solar-driven combined energy supply systems for low-temperate applications, particularly those based on the Organic Rankine Cycle (ORC), Kalina Cycle (KC), or Trilateral Cycle (TLC). However, systems based on these thermodynamic cycles usually employ large area collectors that stand alone or are placed on the roof, without considering integration with the building facade. This research presents a solution to large-scale photothermal utilization integrated with facades for co-generated systems. The current study is the first to conduct performance and economic assessment for four novel solar cooling and power (SCP) co-generated systems driven by evacuated tube solar collectors (ETCs) or semi-transparent photovoltaic (STPV) integrated into the building facades. The suggested systems were simulated using TRNSYS to forecast their performance metrics when used in four Chinese cities with various climate zones. As indicators, a solar fraction (SF) and unit energy cost (UEC) was used to evaluate the technical and financial aspects of each system. The STPV-vapor compression cycle (VCC) system had the highest SF (100%, except Haikou), as well as the lowest UEC (0.211/kWh on average) among the four cities, according to the results. Among the three solar − thermal co − generation systems, ETC − ORC − VCC had the best performance (SF:37.9%, UEC:0.597/kWh on average).
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.