Adi Wibowo, J. Setiawan, H. Afrisal, Anak Agung Sagung Manik Mahachandra Jayanti Mertha, S. Santosa, Kuncoro Wisnu, Ambar Mardiyoto, Henri Nurrakhman, Boyi Kartiwa, W. Caesarendra
{"title":"使用深度学习和多个高帧率相机传感器优化实时产品质量评估的计算资源","authors":"Adi Wibowo, J. Setiawan, H. Afrisal, Anak Agung Sagung Manik Mahachandra Jayanti Mertha, S. Santosa, Kuncoro Wisnu, Ambar Mardiyoto, Henri Nurrakhman, Boyi Kartiwa, W. Caesarendra","doi":"10.3390/asi6010025","DOIUrl":null,"url":null,"abstract":"Human eyes generally perform product defect inspection in Indonesian industrial production lines; resulting in low efficiency and a high margin of error due to eye tiredness. Automated quality assessment systems for mass production can utilize deep learning connected to cameras for more efficient defect detection. However, employing deep learning on multiple high frame rate cameras (HFRC) causes the need for much computation and decreases deep learning performance, especially in the real-time inspection of moving objects. This paper proposes optimizing computational resources for real-time product quality assessment on moving cylindrical shell objects using deep learning with multiple HFRC Sensors. Two application frameworks embedded with several deep learning models were compared and tested to produce robust and powerful applications to assess the quality of production results on rotating objects. Based on the experiment results using three HFRC Sensors, a web-based application with tensorflow.js framework outperformed desktop applications in computation. Moreover, MobileNet v1 delivers the highest performance compared to other models. This result reveals an opportunity for a web-based application as a lightweight framework for quality assessment using multiple HFRC and deep learning.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Computational Resources for Real-Time Product Quality Assessment Using Deep Learning and Multiple High Frame Rate Camera Sensors\",\"authors\":\"Adi Wibowo, J. Setiawan, H. Afrisal, Anak Agung Sagung Manik Mahachandra Jayanti Mertha, S. Santosa, Kuncoro Wisnu, Ambar Mardiyoto, Henri Nurrakhman, Boyi Kartiwa, W. Caesarendra\",\"doi\":\"10.3390/asi6010025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human eyes generally perform product defect inspection in Indonesian industrial production lines; resulting in low efficiency and a high margin of error due to eye tiredness. Automated quality assessment systems for mass production can utilize deep learning connected to cameras for more efficient defect detection. However, employing deep learning on multiple high frame rate cameras (HFRC) causes the need for much computation and decreases deep learning performance, especially in the real-time inspection of moving objects. This paper proposes optimizing computational resources for real-time product quality assessment on moving cylindrical shell objects using deep learning with multiple HFRC Sensors. Two application frameworks embedded with several deep learning models were compared and tested to produce robust and powerful applications to assess the quality of production results on rotating objects. Based on the experiment results using three HFRC Sensors, a web-based application with tensorflow.js framework outperformed desktop applications in computation. Moreover, MobileNet v1 delivers the highest performance compared to other models. This result reveals an opportunity for a web-based application as a lightweight framework for quality assessment using multiple HFRC and deep learning.\",\"PeriodicalId\":36273,\"journal\":{\"name\":\"Applied System Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied System Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/asi6010025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi6010025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Optimization of Computational Resources for Real-Time Product Quality Assessment Using Deep Learning and Multiple High Frame Rate Camera Sensors
Human eyes generally perform product defect inspection in Indonesian industrial production lines; resulting in low efficiency and a high margin of error due to eye tiredness. Automated quality assessment systems for mass production can utilize deep learning connected to cameras for more efficient defect detection. However, employing deep learning on multiple high frame rate cameras (HFRC) causes the need for much computation and decreases deep learning performance, especially in the real-time inspection of moving objects. This paper proposes optimizing computational resources for real-time product quality assessment on moving cylindrical shell objects using deep learning with multiple HFRC Sensors. Two application frameworks embedded with several deep learning models were compared and tested to produce robust and powerful applications to assess the quality of production results on rotating objects. Based on the experiment results using three HFRC Sensors, a web-based application with tensorflow.js framework outperformed desktop applications in computation. Moreover, MobileNet v1 delivers the highest performance compared to other models. This result reveals an opportunity for a web-based application as a lightweight framework for quality assessment using multiple HFRC and deep learning.