{"title":"用于对话框生成的递归神经网络中输出注意的扩展","authors":"Chan Lee","doi":"10.5121/IJAIA.2018.9504","DOIUrl":null,"url":null,"abstract":"Attention mechanism in recurrent neural networks has been widely used in natural language processing. In this paper, the research team explore a new mechanism of extending output attention in recurrent neural networks for dialog systems. The new attention method was compared with the current method in generating dialog sentence using a real dataset. Our architecture exhibits several attractive properties such as better handle long sequences and, it could generate more reasonable replies in many cases.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending Output Attentions in Recurrent Neural Networks for Dialog Generation\",\"authors\":\"Chan Lee\",\"doi\":\"10.5121/IJAIA.2018.9504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention mechanism in recurrent neural networks has been widely used in natural language processing. In this paper, the research team explore a new mechanism of extending output attention in recurrent neural networks for dialog systems. The new attention method was compared with the current method in generating dialog sentence using a real dataset. Our architecture exhibits several attractive properties such as better handle long sequences and, it could generate more reasonable replies in many cases.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2018.9504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2018.9504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending Output Attentions in Recurrent Neural Networks for Dialog Generation
Attention mechanism in recurrent neural networks has been widely used in natural language processing. In this paper, the research team explore a new mechanism of extending output attention in recurrent neural networks for dialog systems. The new attention method was compared with the current method in generating dialog sentence using a real dataset. Our architecture exhibits several attractive properties such as better handle long sequences and, it could generate more reasonable replies in many cases.