{"title":"纤维喷射混凝土的开裂后性能:梁与板的数值比较","authors":"Lina Östlund, A. Sjölander, Elin Brodd","doi":"10.3390/fib11070059","DOIUrl":null,"url":null,"abstract":"Fibre-reinforced shotcrete is an essential part of the support of hard rock tunnels. Due to the complexity of the design, a combination of empirical and numerical analysis is commonly used in the design. The required dosage of fibres for structural purposes is determined based on minimum energy absorption or residual flexural strength. The latter is derived from tests on beams, while energy absorption is tested on panels. It is widely known that tests on beams suffer from a large scatter in results due to the short fracture zone in combination with the natural variation in the number and orientation of fibres which bridge the crack. This impacts the characteristic strength derived from these tests negatively. This paper presents a numerical study to investigate how the test method affects the required dosage of fibres. First, a non-linear model for shotcrete based on continuum damage mechanics is presented. Thereafter, the model is tuned against test results for beams and panels. A model tuned on beams is then used to simulate the response of a panel and vice versa. The results indicate that the size of the fracture zone has a significant effect on the post-cracking behaviour and that the required dosage of fibres could be decreased if specimens with longer fracture zones, i.e., panels or slabs, are used.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-Cracking Behaviour of Fibre-Reinforced Shotcrete: A Numerical Comparison between Beams and Panels\",\"authors\":\"Lina Östlund, A. Sjölander, Elin Brodd\",\"doi\":\"10.3390/fib11070059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fibre-reinforced shotcrete is an essential part of the support of hard rock tunnels. Due to the complexity of the design, a combination of empirical and numerical analysis is commonly used in the design. The required dosage of fibres for structural purposes is determined based on minimum energy absorption or residual flexural strength. The latter is derived from tests on beams, while energy absorption is tested on panels. It is widely known that tests on beams suffer from a large scatter in results due to the short fracture zone in combination with the natural variation in the number and orientation of fibres which bridge the crack. This impacts the characteristic strength derived from these tests negatively. This paper presents a numerical study to investigate how the test method affects the required dosage of fibres. First, a non-linear model for shotcrete based on continuum damage mechanics is presented. Thereafter, the model is tuned against test results for beams and panels. A model tuned on beams is then used to simulate the response of a panel and vice versa. The results indicate that the size of the fracture zone has a significant effect on the post-cracking behaviour and that the required dosage of fibres could be decreased if specimens with longer fracture zones, i.e., panels or slabs, are used.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib11070059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11070059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Post-Cracking Behaviour of Fibre-Reinforced Shotcrete: A Numerical Comparison between Beams and Panels
Fibre-reinforced shotcrete is an essential part of the support of hard rock tunnels. Due to the complexity of the design, a combination of empirical and numerical analysis is commonly used in the design. The required dosage of fibres for structural purposes is determined based on minimum energy absorption or residual flexural strength. The latter is derived from tests on beams, while energy absorption is tested on panels. It is widely known that tests on beams suffer from a large scatter in results due to the short fracture zone in combination with the natural variation in the number and orientation of fibres which bridge the crack. This impacts the characteristic strength derived from these tests negatively. This paper presents a numerical study to investigate how the test method affects the required dosage of fibres. First, a non-linear model for shotcrete based on continuum damage mechanics is presented. Thereafter, the model is tuned against test results for beams and panels. A model tuned on beams is then used to simulate the response of a panel and vice versa. The results indicate that the size of the fracture zone has a significant effect on the post-cracking behaviour and that the required dosage of fibres could be decreased if specimens with longer fracture zones, i.e., panels or slabs, are used.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins