{"title":"决策树的亚原子证明系统","authors":"Chris Barrett, Alessio Guglielmi","doi":"10.1145/3545116","DOIUrl":null,"url":null,"abstract":"We design a proof system for propositional classical logic that integrates two languages for Boolean functions: standard conjunction-disjunction-negation and binary decision trees. We give two reasons to do so. The first is proof-theoretical naturalness: The system consists of all and only the inference rules generated by the single, simple, linear scheme of the recently introduced subatomic logic. Thanks to this regularity, cuts are eliminated via a natural construction. The second reason is that the system generates efficient proofs. Indeed, we show that a certain class of tautologies due to Statman, which cannot have better than exponential cut-free proofs in the sequent calculus, have polynomial cut-free proofs in our system. We achieve this by using the same construction that we use for cut elimination. In summary, by expanding the language of propositional logic, we make its proof theory more regular and generate more proofs, some of which are very efficient. That design is made possible by considering atoms as superpositions of their truth values, which are connected by self-dual, non-commutative connectives. A proof can then be projected via each atom into two proofs, one for each truth value, without a need for cuts. Those projections are semantically natural and are at the heart of the constructions in this article. To accommodate self-dual non-commutativity, we compose proofs in deep inference.","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Subatomic Proof System for Decision Trees\",\"authors\":\"Chris Barrett, Alessio Guglielmi\",\"doi\":\"10.1145/3545116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design a proof system for propositional classical logic that integrates two languages for Boolean functions: standard conjunction-disjunction-negation and binary decision trees. We give two reasons to do so. The first is proof-theoretical naturalness: The system consists of all and only the inference rules generated by the single, simple, linear scheme of the recently introduced subatomic logic. Thanks to this regularity, cuts are eliminated via a natural construction. The second reason is that the system generates efficient proofs. Indeed, we show that a certain class of tautologies due to Statman, which cannot have better than exponential cut-free proofs in the sequent calculus, have polynomial cut-free proofs in our system. We achieve this by using the same construction that we use for cut elimination. In summary, by expanding the language of propositional logic, we make its proof theory more regular and generate more proofs, some of which are very efficient. That design is made possible by considering atoms as superpositions of their truth values, which are connected by self-dual, non-commutative connectives. A proof can then be projected via each atom into two proofs, one for each truth value, without a need for cuts. Those projections are semantically natural and are at the heart of the constructions in this article. To accommodate self-dual non-commutativity, we compose proofs in deep inference.\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3545116\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3545116","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We design a proof system for propositional classical logic that integrates two languages for Boolean functions: standard conjunction-disjunction-negation and binary decision trees. We give two reasons to do so. The first is proof-theoretical naturalness: The system consists of all and only the inference rules generated by the single, simple, linear scheme of the recently introduced subatomic logic. Thanks to this regularity, cuts are eliminated via a natural construction. The second reason is that the system generates efficient proofs. Indeed, we show that a certain class of tautologies due to Statman, which cannot have better than exponential cut-free proofs in the sequent calculus, have polynomial cut-free proofs in our system. We achieve this by using the same construction that we use for cut elimination. In summary, by expanding the language of propositional logic, we make its proof theory more regular and generate more proofs, some of which are very efficient. That design is made possible by considering atoms as superpositions of their truth values, which are connected by self-dual, non-commutative connectives. A proof can then be projected via each atom into two proofs, one for each truth value, without a need for cuts. Those projections are semantically natural and are at the heart of the constructions in this article. To accommodate self-dual non-commutativity, we compose proofs in deep inference.
期刊介绍:
TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI).
Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages.
The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field.
Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.