基于深度学习方法的近实时水力压裂事件识别

IF 1.3 4区 工程技术 Q3 ENGINEERING, PETROLEUM SPE Drilling & Completion Pub Date : 2020-09-01 DOI:10.2118/199738-pa
Yuchang Shen, Dingzhou Cao, Kate Ruddy, Luis Felipe Teixeira de Moraes
{"title":"基于深度学习方法的近实时水力压裂事件识别","authors":"Yuchang Shen, Dingzhou Cao, Kate Ruddy, Luis Felipe Teixeira de Moraes","doi":"10.2118/199738-pa","DOIUrl":null,"url":null,"abstract":"\n This paper provides the technical details of developing models to enable automated stage-wise analyses to be implemented within the real-time completion (RTC) analytics system. The models—two of which use machine learning (ML), including the convolutional neural network (CNN) technique (LeCun et al. 1990) and the U-Net architecture (Ronneberger et al. 2015)—detect the hydraulic fracture stage start and end, identify the ball seat operation, and categorize periods of pump rate. These tasks are performed on the basis of the two reliably available measurements of slurry rate and wellhead pressure, which enable the models to run automatically in real time, and also lay the foundation for further hydraulic fracturing advanced analyses. The presented solution provides real-time automated interpretations of hydraulic fracture events, enabling auto-generation of key performance indicator (KPI) reports, dispelling the need for manual labeling, and eliminating human bias and errors. It replaces the manual tasks in the RTC workflow/data pipeline and paves the way for a fully automated RTC system.","PeriodicalId":51165,"journal":{"name":"SPE Drilling & Completion","volume":"35 1","pages":"478-489"},"PeriodicalIF":1.3000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2118/199738-pa","citationCount":"7","resultStr":"{\"title\":\"Near Real-Time Hydraulic Fracturing Event Recognition Using Deep Learning Methods\",\"authors\":\"Yuchang Shen, Dingzhou Cao, Kate Ruddy, Luis Felipe Teixeira de Moraes\",\"doi\":\"10.2118/199738-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper provides the technical details of developing models to enable automated stage-wise analyses to be implemented within the real-time completion (RTC) analytics system. The models—two of which use machine learning (ML), including the convolutional neural network (CNN) technique (LeCun et al. 1990) and the U-Net architecture (Ronneberger et al. 2015)—detect the hydraulic fracture stage start and end, identify the ball seat operation, and categorize periods of pump rate. These tasks are performed on the basis of the two reliably available measurements of slurry rate and wellhead pressure, which enable the models to run automatically in real time, and also lay the foundation for further hydraulic fracturing advanced analyses. The presented solution provides real-time automated interpretations of hydraulic fracture events, enabling auto-generation of key performance indicator (KPI) reports, dispelling the need for manual labeling, and eliminating human bias and errors. It replaces the manual tasks in the RTC workflow/data pipeline and paves the way for a fully automated RTC system.\",\"PeriodicalId\":51165,\"journal\":{\"name\":\"SPE Drilling & Completion\",\"volume\":\"35 1\",\"pages\":\"478-489\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2118/199738-pa\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Drilling & Completion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/199738-pa\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Drilling & Completion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/199738-pa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 7

摘要

本文提供了开发模型的技术细节,以便在实时完井(RTC)分析系统中实现自动阶段分析。这些模型——其中两个使用机器学习(ML),包括卷积神经网络(CNN)技术(LeCun et al. 1990)和U-Net架构(Ronneberger et al. 2015)——检测水力压裂阶段的开始和结束,识别球座的操作,并对泵速周期进行分类。这些任务是在泥浆速率和井口压力这两个可靠的测量数据的基础上完成的,这使得模型能够实时自动运行,也为进一步的水力压裂高级分析奠定了基础。该解决方案提供了水力压裂事件的实时自动解释,能够自动生成关键性能指标(KPI)报告,消除了人工标记的需要,并消除了人为偏差和错误。它取代了RTC工作流/数据管道中的手动任务,并为全自动RTC系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near Real-Time Hydraulic Fracturing Event Recognition Using Deep Learning Methods
This paper provides the technical details of developing models to enable automated stage-wise analyses to be implemented within the real-time completion (RTC) analytics system. The models—two of which use machine learning (ML), including the convolutional neural network (CNN) technique (LeCun et al. 1990) and the U-Net architecture (Ronneberger et al. 2015)—detect the hydraulic fracture stage start and end, identify the ball seat operation, and categorize periods of pump rate. These tasks are performed on the basis of the two reliably available measurements of slurry rate and wellhead pressure, which enable the models to run automatically in real time, and also lay the foundation for further hydraulic fracturing advanced analyses. The presented solution provides real-time automated interpretations of hydraulic fracture events, enabling auto-generation of key performance indicator (KPI) reports, dispelling the need for manual labeling, and eliminating human bias and errors. It replaces the manual tasks in the RTC workflow/data pipeline and paves the way for a fully automated RTC system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SPE Drilling & Completion
SPE Drilling & Completion 工程技术-工程:石油
CiteScore
4.20
自引率
7.10%
发文量
29
审稿时长
6-12 weeks
期刊介绍: Covers horizontal and directional drilling, drilling fluids, bit technology, sand control, perforating, cementing, well control, completions and drilling operations.
期刊最新文献
Combining Magnetic and Gyroscopic Surveys Provides the Best Possible Accuracy Applications of Machine Learning Methods to Predict Hole Cleaning in Horizontal and Highly Deviated Wells Experimental Investigation of Geopolymers for Application in High-Temperature and Geothermal Well Cementing Analysis of Riser Gas Pressure from Full-Scale Gas-in-Riser Experiments with Instrumentation Correlating Surface and Downhole Perforation Entry Hole Measurements Leads to Development of Improved Perforating Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1