{"title":"一维电离层对振荡电场的响应","authors":"N. Kabbaj, H. Im","doi":"10.1080/13647830.2023.2165965","DOIUrl":null,"url":null,"abstract":"To provide fundamental insights into the response of laminar flames to alternating current (AC) electric fields, a simplified one-dimensional model using an ionised layer model is formulated with the conservation equations for the ion species with ionisation, recombination, and transport due to molecular diffusion and electric mobility. A parametric study is conducted to investigate the response of the ion layer at different voltages and oscillation frequencies, and the results are examined mainly in terms of the net current–voltage (I–V) characteristics. As the oscillation frequency is increased, a nonmonotonic response in the I–V curve is seen such that the current may exceed the saturation condition corresponding to the steady DC condition. In general the current reaches a peak as the unsteady time scale becomes comparable to the ion transport time scale, which is dictated by the mobility, and eventually becomes attenuated at higher frequencies to behave like a low-pass filter. The extent of the peak current rise and the cut-off frequency are found to depend on the characteristic time scales of the ion chemistry and mobility-induced transport. The simplified model serves as a framework to characterise the behaviour of complex flames in terms of the dominant ionisation and transport processes. The current overshoot behaviour may also imply that the overall effect of the electric field may be further magnified under the AC conditions, motivating further studies of multi-dimensional flames for the ionic wind effects.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of one-dimensional ionised layer to oscillatory electric fields\",\"authors\":\"N. Kabbaj, H. Im\",\"doi\":\"10.1080/13647830.2023.2165965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide fundamental insights into the response of laminar flames to alternating current (AC) electric fields, a simplified one-dimensional model using an ionised layer model is formulated with the conservation equations for the ion species with ionisation, recombination, and transport due to molecular diffusion and electric mobility. A parametric study is conducted to investigate the response of the ion layer at different voltages and oscillation frequencies, and the results are examined mainly in terms of the net current–voltage (I–V) characteristics. As the oscillation frequency is increased, a nonmonotonic response in the I–V curve is seen such that the current may exceed the saturation condition corresponding to the steady DC condition. In general the current reaches a peak as the unsteady time scale becomes comparable to the ion transport time scale, which is dictated by the mobility, and eventually becomes attenuated at higher frequencies to behave like a low-pass filter. The extent of the peak current rise and the cut-off frequency are found to depend on the characteristic time scales of the ion chemistry and mobility-induced transport. The simplified model serves as a framework to characterise the behaviour of complex flames in terms of the dominant ionisation and transport processes. The current overshoot behaviour may also imply that the overall effect of the electric field may be further magnified under the AC conditions, motivating further studies of multi-dimensional flames for the ionic wind effects.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2023.2165965\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2023.2165965","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Response of one-dimensional ionised layer to oscillatory electric fields
To provide fundamental insights into the response of laminar flames to alternating current (AC) electric fields, a simplified one-dimensional model using an ionised layer model is formulated with the conservation equations for the ion species with ionisation, recombination, and transport due to molecular diffusion and electric mobility. A parametric study is conducted to investigate the response of the ion layer at different voltages and oscillation frequencies, and the results are examined mainly in terms of the net current–voltage (I–V) characteristics. As the oscillation frequency is increased, a nonmonotonic response in the I–V curve is seen such that the current may exceed the saturation condition corresponding to the steady DC condition. In general the current reaches a peak as the unsteady time scale becomes comparable to the ion transport time scale, which is dictated by the mobility, and eventually becomes attenuated at higher frequencies to behave like a low-pass filter. The extent of the peak current rise and the cut-off frequency are found to depend on the characteristic time scales of the ion chemistry and mobility-induced transport. The simplified model serves as a framework to characterise the behaviour of complex flames in terms of the dominant ionisation and transport processes. The current overshoot behaviour may also imply that the overall effect of the electric field may be further magnified under the AC conditions, motivating further studies of multi-dimensional flames for the ionic wind effects.
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.