螺旋桨载荷对减推率的影响

IF 1.4 Q3 ENGINEERING, MARINE Ship Technology Research Pub Date : 2021-03-04 DOI:10.1080/09377255.2021.1892934
Simone Saettone, B. Taskar, S. Steen, P. Andersen
{"title":"螺旋桨载荷对减推率的影响","authors":"Simone Saettone, B. Taskar, S. Steen, P. Andersen","doi":"10.1080/09377255.2021.1892934","DOIUrl":null,"url":null,"abstract":"ABSTRACT The estimation of the thrust deduction fraction is generally conducted in ideal weather conditions. However, the presence of waves considerably alters the magnitude of this propulsive coefficient. The increased load of the propeller could be the main cause for the variation of the thrust deduction fraction in realistic operating conditions. In this work, load-varying self-propulsion model-scale numerical simulations in calm water conditions for the same ship speed are performed to investigate the influence of the propeller loading on the thrust deduction fraction. The single screw model-scale KVLCC2 tanker is selected as the case study. The results reveal a non-linear inverse correlation between the thrust deduction fraction and the propeller loading. A comparison with model-testing conducted on the KVLCC2 tanker in regular head waves suggests that the propeller loading is the main factor influencing the magnitude of the thrust deduction fraction in waves for the considered case vessel.","PeriodicalId":51883,"journal":{"name":"Ship Technology Research","volume":"69 1","pages":"22 - 30"},"PeriodicalIF":1.4000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09377255.2021.1892934","citationCount":"3","resultStr":"{\"title\":\"The influence of the propeller loading on the thrust deduction fraction\",\"authors\":\"Simone Saettone, B. Taskar, S. Steen, P. Andersen\",\"doi\":\"10.1080/09377255.2021.1892934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The estimation of the thrust deduction fraction is generally conducted in ideal weather conditions. However, the presence of waves considerably alters the magnitude of this propulsive coefficient. The increased load of the propeller could be the main cause for the variation of the thrust deduction fraction in realistic operating conditions. In this work, load-varying self-propulsion model-scale numerical simulations in calm water conditions for the same ship speed are performed to investigate the influence of the propeller loading on the thrust deduction fraction. The single screw model-scale KVLCC2 tanker is selected as the case study. The results reveal a non-linear inverse correlation between the thrust deduction fraction and the propeller loading. A comparison with model-testing conducted on the KVLCC2 tanker in regular head waves suggests that the propeller loading is the main factor influencing the magnitude of the thrust deduction fraction in waves for the considered case vessel.\",\"PeriodicalId\":51883,\"journal\":{\"name\":\"Ship Technology Research\",\"volume\":\"69 1\",\"pages\":\"22 - 30\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09377255.2021.1892934\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ship Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09377255.2021.1892934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ship Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09377255.2021.1892934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 3

摘要

推力推导分数的估计通常在理想天气条件下进行。然而,波浪的存在极大地改变了这个推进系数的大小。在实际运行条件下,螺旋桨载荷的增加可能是推力扣除率变化的主要原因。在这项工作中,在相同船速的平静水域条件下,进行了变载荷自推进模型规模的数值模拟,以研究螺旋桨载荷对推力推导分数的影响。选择单螺杆型号KVLCC2型油轮作为案例研究。结果表明,推力扣除率与螺旋桨载荷之间存在非线性逆相关关系。与KVLCC2油轮在规则头波中进行的模型试验的比较表明,螺旋桨载荷是影响所考虑情况下船舶波浪中推力扣除分数大小的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The influence of the propeller loading on the thrust deduction fraction
ABSTRACT The estimation of the thrust deduction fraction is generally conducted in ideal weather conditions. However, the presence of waves considerably alters the magnitude of this propulsive coefficient. The increased load of the propeller could be the main cause for the variation of the thrust deduction fraction in realistic operating conditions. In this work, load-varying self-propulsion model-scale numerical simulations in calm water conditions for the same ship speed are performed to investigate the influence of the propeller loading on the thrust deduction fraction. The single screw model-scale KVLCC2 tanker is selected as the case study. The results reveal a non-linear inverse correlation between the thrust deduction fraction and the propeller loading. A comparison with model-testing conducted on the KVLCC2 tanker in regular head waves suggests that the propeller loading is the main factor influencing the magnitude of the thrust deduction fraction in waves for the considered case vessel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ship Technology Research
Ship Technology Research ENGINEERING, MARINE-
CiteScore
4.90
自引率
4.50%
发文量
10
期刊最新文献
Measurements of steady manoeuvring forces and moments over an axisymmetric body with appendages in a wind tunnel Practical ship afterbody optimization by multifidelity techniques Unsteady ship–bank interaction: a comparison between experimental and computational predictions A new power prediction method using ship in-service data: a case study on a general cargo ship Active flow control applied to a ship rudder model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1