{"title":"存在位移梯度的数字散斑摄影","authors":"León Schweickhardt","doi":"10.1051/jeos/2023012","DOIUrl":null,"url":null,"abstract":"Digital speckle photography is a displacement field measurement method that employs laser speckles as surface markers. Since the approach requires only one reference image without a preparation of the sample and provides a fast, single-shot measurement with interferometric precision, the method is applied for in-process measurements in manufacturing engineering. Due to highly localized loads, higher-order displacement gradients occur in manufacturing processes and it is an open research question how these gradients affect the measurement errors of digital speckle photography. We simulate isotropic Gaussian surface topographies, apply a displacement field and then generate laser speckle patterns, which are evaluated with digital image correlation and subsequently the resulting random and systematic errors of the displacement field are analyzed. We found that the random error is proportional to the first-order displacement gradient and results from decorrelation of the laser speckles. The systematic error is mainly caused by the evaluation algorithm and is linearly dependent on the second-order gradient and the subset size. We evaluated in-process displacement measurements of laser hardening, grinding and single-tooth milling where we determined the relative error caused by displacement gradients to be below 2.5 % based on the findings from the simulative study.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital speckle photography in the presence of displacement gradients\",\"authors\":\"León Schweickhardt\",\"doi\":\"10.1051/jeos/2023012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital speckle photography is a displacement field measurement method that employs laser speckles as surface markers. Since the approach requires only one reference image without a preparation of the sample and provides a fast, single-shot measurement with interferometric precision, the method is applied for in-process measurements in manufacturing engineering. Due to highly localized loads, higher-order displacement gradients occur in manufacturing processes and it is an open research question how these gradients affect the measurement errors of digital speckle photography. We simulate isotropic Gaussian surface topographies, apply a displacement field and then generate laser speckle patterns, which are evaluated with digital image correlation and subsequently the resulting random and systematic errors of the displacement field are analyzed. We found that the random error is proportional to the first-order displacement gradient and results from decorrelation of the laser speckles. The systematic error is mainly caused by the evaluation algorithm and is linearly dependent on the second-order gradient and the subset size. We evaluated in-process displacement measurements of laser hardening, grinding and single-tooth milling where we determined the relative error caused by displacement gradients to be below 2.5 % based on the findings from the simulative study.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2023012\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Digital speckle photography in the presence of displacement gradients
Digital speckle photography is a displacement field measurement method that employs laser speckles as surface markers. Since the approach requires only one reference image without a preparation of the sample and provides a fast, single-shot measurement with interferometric precision, the method is applied for in-process measurements in manufacturing engineering. Due to highly localized loads, higher-order displacement gradients occur in manufacturing processes and it is an open research question how these gradients affect the measurement errors of digital speckle photography. We simulate isotropic Gaussian surface topographies, apply a displacement field and then generate laser speckle patterns, which are evaluated with digital image correlation and subsequently the resulting random and systematic errors of the displacement field are analyzed. We found that the random error is proportional to the first-order displacement gradient and results from decorrelation of the laser speckles. The systematic error is mainly caused by the evaluation algorithm and is linearly dependent on the second-order gradient and the subset size. We evaluated in-process displacement measurements of laser hardening, grinding and single-tooth milling where we determined the relative error caused by displacement gradients to be below 2.5 % based on the findings from the simulative study.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.