非平衡分离时间对头孢氨苄在葡萄糖-乙腈双水相体系中分配的影响

IF 4.3 3区 工程技术 Q1 MECHANICS Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-07-17 DOI:10.1515/jnet-2023-0028
Parsa Movahedi, Ali Jalali Qush Qayeh, Javad Rahbar Shahrouzi
{"title":"非平衡分离时间对头孢氨苄在葡萄糖-乙腈双水相体系中分配的影响","authors":"Parsa Movahedi, Ali Jalali Qush Qayeh, Javad Rahbar Shahrouzi","doi":"10.1515/jnet-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract In order to commercialize aqueous two-phase systems (ATPSs), not only the equilibrium data is essential, but also the knowledge of separation mechanisms, kinetics, settling time, and operational conditions are needed. Mixing duration and settling time are the most critical factors affecting separation and biomolecule partitioning in terms of economic aspects. This research aimed to find the desired conditions for separating cephalexin in an ATPS consisting of acetonitrile, glucose, and water. Firstly, the evolution of the interphase region was observed. Hereafter, to examine the effect of time on the experimental tie-lines and partition coefficient in non-equilibrium states, the settling time was varied from 2 min to 24 h. In addition, centrifugation was applied to help the separation at different time intervals and rotational speeds. The results of tie-lines slope and partitioning coefficients showed that the system approaches equilibrium after 5 h. However, using the centrifuge separation at 4000 rpm improved the separation time to 45 min, reaching 80 % of the actual partition coefficient. It can be concluded that with an acceptable tolerance in the partition coefficient, a remarkably diminished settling time is available for economic productivity in industrial units.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of non-equilibrium separation time on the partitioning of cephalexin in an aqueous two-phase system composed of glucose and acetonitrile\",\"authors\":\"Parsa Movahedi, Ali Jalali Qush Qayeh, Javad Rahbar Shahrouzi\",\"doi\":\"10.1515/jnet-2023-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to commercialize aqueous two-phase systems (ATPSs), not only the equilibrium data is essential, but also the knowledge of separation mechanisms, kinetics, settling time, and operational conditions are needed. Mixing duration and settling time are the most critical factors affecting separation and biomolecule partitioning in terms of economic aspects. This research aimed to find the desired conditions for separating cephalexin in an ATPS consisting of acetonitrile, glucose, and water. Firstly, the evolution of the interphase region was observed. Hereafter, to examine the effect of time on the experimental tie-lines and partition coefficient in non-equilibrium states, the settling time was varied from 2 min to 24 h. In addition, centrifugation was applied to help the separation at different time intervals and rotational speeds. The results of tie-lines slope and partitioning coefficients showed that the system approaches equilibrium after 5 h. However, using the centrifuge separation at 4000 rpm improved the separation time to 45 min, reaching 80 % of the actual partition coefficient. It can be concluded that with an acceptable tolerance in the partition coefficient, a remarkably diminished settling time is available for economic productivity in industrial units.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2023-0028\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0028","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要为了使双水相系统(ATPSs)商业化,不仅平衡数据是必不可少的,而且还需要分离机理、动力学、沉降时间和操作条件的知识。从经济角度来看,混合持续时间和沉降时间是影响分离和生物分子分配的最关键因素。本研究旨在寻找在由乙腈、葡萄糖和水组成的ATPS中分离头孢氨苄的理想条件。首先,观察了界面区的演化。此后,为了检验时间对非平衡状态下实验联络线和分配系数的影响,沉降时间从2 最小 至24 h.此外,在不同的时间间隔和转速下应用离心来帮助分离。联络线斜率和分配系数的结果表明,系统在5 h.然而,使用4000的离心机分离 rpm将分离时间提高到45 分钟,达到80 % 实际分配系数。可以得出结论,在分配系数具有可接受的公差的情况下,工业单元的经济生产力可以显著缩短沉降时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of non-equilibrium separation time on the partitioning of cephalexin in an aqueous two-phase system composed of glucose and acetonitrile
Abstract In order to commercialize aqueous two-phase systems (ATPSs), not only the equilibrium data is essential, but also the knowledge of separation mechanisms, kinetics, settling time, and operational conditions are needed. Mixing duration and settling time are the most critical factors affecting separation and biomolecule partitioning in terms of economic aspects. This research aimed to find the desired conditions for separating cephalexin in an ATPS consisting of acetonitrile, glucose, and water. Firstly, the evolution of the interphase region was observed. Hereafter, to examine the effect of time on the experimental tie-lines and partition coefficient in non-equilibrium states, the settling time was varied from 2 min to 24 h. In addition, centrifugation was applied to help the separation at different time intervals and rotational speeds. The results of tie-lines slope and partitioning coefficients showed that the system approaches equilibrium after 5 h. However, using the centrifuge separation at 4000 rpm improved the separation time to 45 min, reaching 80 % of the actual partition coefficient. It can be concluded that with an acceptable tolerance in the partition coefficient, a remarkably diminished settling time is available for economic productivity in industrial units.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
期刊最新文献
Performance analysis of quantum harmonic Otto engine and refrigerator under a trade-off figure of merit Investigation of the operating characteristics of diesel engines with chromium oxide (Cr2O3) nanoparticles dispersed in Mesua ferrea biodiesel: an experimental and predictive approach using ANNs and RSM Analytical solutions for nonequilibrium bioheat transfer in tumor during magnetic nanoparticles hyperthermia Composite liquids under high-power heating: superheat of water in micro-explosion of water-in-fuel droplets Application of a three-laser optical digital interferometry in a thermogravitational analysis for binary and ternary mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1