利用新型冲洗技术进行微细电化学铣削加工,生成高纵横比复杂的微特征

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2021-11-08 DOI:10.1080/10910344.2021.1971713
K. Mishra, B. Sarkar, B. Bhattacharyya
{"title":"利用新型冲洗技术进行微细电化学铣削加工,生成高纵横比复杂的微特征","authors":"K. Mishra, B. Sarkar, B. Bhattacharyya","doi":"10.1080/10910344.2021.1971713","DOIUrl":null,"url":null,"abstract":"Abstract Fabrication of high aspect ratio (HAR) complex micro features on high strength temperature resistant (HSTR) alloys is challenging by any conventional or non-conventional machining methods. In this study blind, HAR and complex micro features have been fabricated by micro electrochemical milling (MEM) on HSTR Cobalt alloy (Haynes-188) introducing a new strategic approach with novel flushing technique which could get rid of the need of pulsed DC power supply. Multiphysics simulation of the rotating micro-tool at different rpm and its impact on effective sludge removal has been analyzed and verified experimentally. In this study, most influencing parameters of MEM like voltage, feed rate, rpm of tool and milling layer depth have been selected to investigate their effects on the machining responses like width overcut, machined depth and surface roughness on Haynes-188 alloy. Comparison has also been made with constant and pulsed DC power source to know the influence of these process parameters on the MEM responses. Finally, several linear and non-linear blind, HAR (AR > 11) and intricate micro features have been fabricated successfully on cobalt alloy at the most suitable parametric combination, i.e., 7.5 V of machining voltage, feed rate of 0.3 mm/min, and tool rotation of 750RPM with 0.5 M of NaNO3 electrolyte.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"26 1","pages":"18 - 48"},"PeriodicalIF":2.7000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generation of high aspect ratio complex micro-features by micro-electrochemical milling employing novel flushing technique\",\"authors\":\"K. Mishra, B. Sarkar, B. Bhattacharyya\",\"doi\":\"10.1080/10910344.2021.1971713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fabrication of high aspect ratio (HAR) complex micro features on high strength temperature resistant (HSTR) alloys is challenging by any conventional or non-conventional machining methods. In this study blind, HAR and complex micro features have been fabricated by micro electrochemical milling (MEM) on HSTR Cobalt alloy (Haynes-188) introducing a new strategic approach with novel flushing technique which could get rid of the need of pulsed DC power supply. Multiphysics simulation of the rotating micro-tool at different rpm and its impact on effective sludge removal has been analyzed and verified experimentally. In this study, most influencing parameters of MEM like voltage, feed rate, rpm of tool and milling layer depth have been selected to investigate their effects on the machining responses like width overcut, machined depth and surface roughness on Haynes-188 alloy. Comparison has also been made with constant and pulsed DC power source to know the influence of these process parameters on the MEM responses. Finally, several linear and non-linear blind, HAR (AR > 11) and intricate micro features have been fabricated successfully on cobalt alloy at the most suitable parametric combination, i.e., 7.5 V of machining voltage, feed rate of 0.3 mm/min, and tool rotation of 750RPM with 0.5 M of NaNO3 electrolyte.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":\"26 1\",\"pages\":\"18 - 48\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2021.1971713\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1971713","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

摘要

摘要在高强度耐温(HSTR)合金上制备高纵横比(HAR)复杂微特征是任何传统或非传统加工方法都具有挑战性的。在本研究中,通过在HSTR钴合金(Haynes-188)上进行微电化学铣削(MEM),制备了盲、HAR和复杂的微观特征,引入了一种新的策略方法和新的冲洗技术,可以摆脱脉冲直流电源的需要。对不同转速下旋转微工具的多物理模拟及其对污泥有效去除的影响进行了实验分析和验证。在本研究中,选择了MEM等最具影响的参数,如电压、进给速度、刀具转速和铣削层深度,以研究它们对Haynes-188合金加工响应的影响,如宽度过切、加工深度和表面粗糙度。还与恒定和脉冲直流电源进行了比较,以了解这些工艺参数对MEM响应的影响。最后,在最合适的参数组合(即7.5)下,在钴合金上成功地制备了几个线性和非线性盲、HAR(AR>11)和复杂的微观特征 加工电压的V,进给速率为0.3 mm/min,刀具旋转750RPM,0.5 M的NaNO3电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of high aspect ratio complex micro-features by micro-electrochemical milling employing novel flushing technique
Abstract Fabrication of high aspect ratio (HAR) complex micro features on high strength temperature resistant (HSTR) alloys is challenging by any conventional or non-conventional machining methods. In this study blind, HAR and complex micro features have been fabricated by micro electrochemical milling (MEM) on HSTR Cobalt alloy (Haynes-188) introducing a new strategic approach with novel flushing technique which could get rid of the need of pulsed DC power supply. Multiphysics simulation of the rotating micro-tool at different rpm and its impact on effective sludge removal has been analyzed and verified experimentally. In this study, most influencing parameters of MEM like voltage, feed rate, rpm of tool and milling layer depth have been selected to investigate their effects on the machining responses like width overcut, machined depth and surface roughness on Haynes-188 alloy. Comparison has also been made with constant and pulsed DC power source to know the influence of these process parameters on the MEM responses. Finally, several linear and non-linear blind, HAR (AR > 11) and intricate micro features have been fabricated successfully on cobalt alloy at the most suitable parametric combination, i.e., 7.5 V of machining voltage, feed rate of 0.3 mm/min, and tool rotation of 750RPM with 0.5 M of NaNO3 electrolyte.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Numerical modeling of heat flux in ultrasonic-assisted grinding of difficult-to-cut materials with a pressurized lubrication system The performance of grooved turning tools under distinct cooling environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1