基于深度学习的嵌入式自动车牌识别系统

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Design Automation for Embedded Systems Pub Date : 2018-11-01 DOI:10.1109/SBESC.2018.00015
Diogo M. F. Izidio, Antonyus P. A. Ferreira, Edna Barros
{"title":"基于深度学习的嵌入式自动车牌识别系统","authors":"Diogo M. F. Izidio, Antonyus P. A. Ferreira, Edna Barros","doi":"10.1109/SBESC.2018.00015","DOIUrl":null,"url":null,"abstract":"A system to automatically recognize vehicle license plates is a growing need to improve safety and traffic control, specifically in major urban centers. However, the license plate recognition task is generally computationally intensive, where the entire input image frame is scanned, the found plates are segmented, and character recognition is then performed for each segmented character. This paper presents a methodology for engineering a system to detect and recognize Brazilian license plates using convolutional neural networks (CNN) that is suitable for embedded systems. The resulting system detects license plates in the captured image using Tiny YOLOv3 architecture and identifies its characters using a second convolutional network trained on synthetic images and fine-tuned with real license plate images. The proposed architecture has demonstrated to be robust to angle, lightning, and noise variations while requiring a single forward pass for each network, therefore allowing faster processing compared to other deep learning approaches. Our methodology was validated using real license plate images under different environmental conditions reached a detection rate of 99.37% and an overall recognition rate of 98.43% while showing an average time of 2.70 s to process $$1024 \\times 768$$ 1024 × 768 images with a single license plate in a Raspberry Pi3 (ARM Cortex-A53 CPU). To improve the recognition accuracy, an ensemble of CNN models was tested instead of a single CNN model, which resulted in an increase in the average processing time to 4.88 s for each image while increasing the recognition rate to 99.53%. Finally, we discuss the impact of using an ensemble of CNNs considering the accuracy-performance trade-off when engineering embedded systems for license plate recognition.","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"24 1","pages":"23-43"},"PeriodicalIF":0.9000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/SBESC.2018.00015","citationCount":"43","resultStr":"{\"title\":\"An embedded automatic license plate recognition system using deep learning\",\"authors\":\"Diogo M. F. Izidio, Antonyus P. A. Ferreira, Edna Barros\",\"doi\":\"10.1109/SBESC.2018.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A system to automatically recognize vehicle license plates is a growing need to improve safety and traffic control, specifically in major urban centers. However, the license plate recognition task is generally computationally intensive, where the entire input image frame is scanned, the found plates are segmented, and character recognition is then performed for each segmented character. This paper presents a methodology for engineering a system to detect and recognize Brazilian license plates using convolutional neural networks (CNN) that is suitable for embedded systems. The resulting system detects license plates in the captured image using Tiny YOLOv3 architecture and identifies its characters using a second convolutional network trained on synthetic images and fine-tuned with real license plate images. The proposed architecture has demonstrated to be robust to angle, lightning, and noise variations while requiring a single forward pass for each network, therefore allowing faster processing compared to other deep learning approaches. Our methodology was validated using real license plate images under different environmental conditions reached a detection rate of 99.37% and an overall recognition rate of 98.43% while showing an average time of 2.70 s to process $$1024 \\\\times 768$$ 1024 × 768 images with a single license plate in a Raspberry Pi3 (ARM Cortex-A53 CPU). To improve the recognition accuracy, an ensemble of CNN models was tested instead of a single CNN model, which resulted in an increase in the average processing time to 4.88 s for each image while increasing the recognition rate to 99.53%. Finally, we discuss the impact of using an ensemble of CNNs considering the accuracy-performance trade-off when engineering embedded systems for license plate recognition.\",\"PeriodicalId\":50594,\"journal\":{\"name\":\"Design Automation for Embedded Systems\",\"volume\":\"24 1\",\"pages\":\"23-43\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/SBESC.2018.00015\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Automation for Embedded Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/SBESC.2018.00015\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/SBESC.2018.00015","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 43

摘要

自动识别车牌系统是提高安全和交通控制的一个日益增长的需求,特别是在主要城市中心。然而,车牌识别任务通常是计算密集型的,其中扫描整个输入图像帧,对发现的车牌进行分割,然后对每个分割的字符进行字符识别。本文提出了一种使用卷积神经网络(CNN)检测和识别巴西车牌的工程系统的方法,该方法适用于嵌入式系统。由此产生的系统使用Tiny YOLOv3架构检测捕获图像中的车牌,并使用在合成图像上训练并与真实车牌图像进行微调的第二个卷积网络识别其特征。所提出的架构已被证明对角度、闪电和噪声变化具有鲁棒性,同时每个网络需要单个前向通道,因此与其他深度学习方法相比,可以更快地处理。采用不同环境条件下的真实车牌图像对方法进行验证,检测率达到99.37% and an overall recognition rate of 98.43% while showing an average time of 2.70 s to process $$1024 \times 768$$ 1024 × 768 images with a single license plate in a Raspberry Pi3 (ARM Cortex-A53 CPU). To improve the recognition accuracy, an ensemble of CNN models was tested instead of a single CNN model, which resulted in an increase in the average processing time to 4.88 s for each image while increasing the recognition rate to 99.53%. Finally, we discuss the impact of using an ensemble of CNNs considering the accuracy-performance trade-off when engineering embedded systems for license plate recognition.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An embedded automatic license plate recognition system using deep learning
A system to automatically recognize vehicle license plates is a growing need to improve safety and traffic control, specifically in major urban centers. However, the license plate recognition task is generally computationally intensive, where the entire input image frame is scanned, the found plates are segmented, and character recognition is then performed for each segmented character. This paper presents a methodology for engineering a system to detect and recognize Brazilian license plates using convolutional neural networks (CNN) that is suitable for embedded systems. The resulting system detects license plates in the captured image using Tiny YOLOv3 architecture and identifies its characters using a second convolutional network trained on synthetic images and fine-tuned with real license plate images. The proposed architecture has demonstrated to be robust to angle, lightning, and noise variations while requiring a single forward pass for each network, therefore allowing faster processing compared to other deep learning approaches. Our methodology was validated using real license plate images under different environmental conditions reached a detection rate of 99.37% and an overall recognition rate of 98.43% while showing an average time of 2.70 s to process $$1024 \times 768$$ 1024 × 768 images with a single license plate in a Raspberry Pi3 (ARM Cortex-A53 CPU). To improve the recognition accuracy, an ensemble of CNN models was tested instead of a single CNN model, which resulted in an increase in the average processing time to 4.88 s for each image while increasing the recognition rate to 99.53%. Finally, we discuss the impact of using an ensemble of CNNs considering the accuracy-performance trade-off when engineering embedded systems for license plate recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Design Automation for Embedded Systems
Design Automation for Embedded Systems 工程技术-计算机:软件工程
CiteScore
2.60
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts. Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques. Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others. Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software. Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.
期刊最新文献
Model predictive-based DNN control model for automated steering deployed on FPGA using an automatic IP generator tool Design and analysis of an adaptive radiation resilient RRAM subsystem for processing systems in satellites Improving edge AI for industrial IoT applications with distributed learning using consensus Profiling with trust: system monitoring from trusted execution environments Novel adaptive quantization methodology for 8-bit floating-point DNN training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1