水平稀释管火焰气体取样的计算流体力学研究

IF 2.8 Q2 MECHANICS Flow (Cambridge, England) Pub Date : 2022-06-30 DOI:10.1017/flo.2022.10
H. Mätzing, P. Vlavakis, D. Trimis, D. Stapf
{"title":"水平稀释管火焰气体取样的计算流体力学研究","authors":"H. Mätzing, P. Vlavakis, D. Trimis, D. Stapf","doi":"10.1017/flo.2022.10","DOIUrl":null,"url":null,"abstract":"Abstract The performance of horizontal dilution tubes is investigated by Reynolds-averaged Navier–Stokes and large-eddy simulations. The flame gas enters the dilution tube through a pinhole. The orifice flow and the dilution process inside the tube are studied. The volume flow through the orifice is shown to be proportional to the square root of the pressure drop. The discharge coefficient is 0.9 ± 0.3 in the cold air (calibration) case and drops to 0.35 under hot (flame) conditions. The resulting dilution ratio is roughly a factor of five below typical literature data. The gas sample remains in the wall boundary layer and the mixing process is not complete at the end of the dilution tube. Turbulence decays rapidly behind the tube inlet, which shifts the flow into the laminar to turbulent transition regime. Turbulence increases significantly in the outlet section which has much smaller pipe cross-sections. Despite its relatively low Reynolds number, the outlet flow to the particle sizer (or to the gas analyzer) is clearly turbulent, and interactions with the wall are probable. The results are in agreement with previous findings from laminar jets in cross-flow. Guidelines for optimization of the sampling conditions are suggested.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational fluid dynamics study of flame gas sampling in horizontal dilution tubes\",\"authors\":\"H. Mätzing, P. Vlavakis, D. Trimis, D. Stapf\",\"doi\":\"10.1017/flo.2022.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The performance of horizontal dilution tubes is investigated by Reynolds-averaged Navier–Stokes and large-eddy simulations. The flame gas enters the dilution tube through a pinhole. The orifice flow and the dilution process inside the tube are studied. The volume flow through the orifice is shown to be proportional to the square root of the pressure drop. The discharge coefficient is 0.9 ± 0.3 in the cold air (calibration) case and drops to 0.35 under hot (flame) conditions. The resulting dilution ratio is roughly a factor of five below typical literature data. The gas sample remains in the wall boundary layer and the mixing process is not complete at the end of the dilution tube. Turbulence decays rapidly behind the tube inlet, which shifts the flow into the laminar to turbulent transition regime. Turbulence increases significantly in the outlet section which has much smaller pipe cross-sections. Despite its relatively low Reynolds number, the outlet flow to the particle sizer (or to the gas analyzer) is clearly turbulent, and interactions with the wall are probable. The results are in agreement with previous findings from laminar jets in cross-flow. Guidelines for optimization of the sampling conditions are suggested.\",\"PeriodicalId\":93752,\"journal\":{\"name\":\"Flow (Cambridge, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow (Cambridge, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/flo.2022.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2022.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用reynolds -average Navier-Stokes和大涡模拟方法研究了水平稀释管的性能。火焰气体通过针孔进入稀释管。研究了孔板流动和管内稀释过程。通过孔板的体积流量与压降的平方根成正比。在冷空气(校准)情况下,放电系数为0.9±0.3,在热(火焰)条件下降至0.35。得到的稀释率大约是典型文献数据的五倍。气体样品停留在壁面边界层中,稀释管末端的混合过程未完成。湍流在管道入口后迅速衰减,使气流进入层流到湍流的过渡状态。在管道截面小得多的出口段湍流度明显增加。尽管雷诺数相对较低,但通往粒度仪(或气体分析仪)的出口流动明显是湍流的,并且可能与壁面相互作用。结果与先前层流射流在横流中的研究结果一致。提出了优化采样条件的准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational fluid dynamics study of flame gas sampling in horizontal dilution tubes
Abstract The performance of horizontal dilution tubes is investigated by Reynolds-averaged Navier–Stokes and large-eddy simulations. The flame gas enters the dilution tube through a pinhole. The orifice flow and the dilution process inside the tube are studied. The volume flow through the orifice is shown to be proportional to the square root of the pressure drop. The discharge coefficient is 0.9 ± 0.3 in the cold air (calibration) case and drops to 0.35 under hot (flame) conditions. The resulting dilution ratio is roughly a factor of five below typical literature data. The gas sample remains in the wall boundary layer and the mixing process is not complete at the end of the dilution tube. Turbulence decays rapidly behind the tube inlet, which shifts the flow into the laminar to turbulent transition regime. Turbulence increases significantly in the outlet section which has much smaller pipe cross-sections. Despite its relatively low Reynolds number, the outlet flow to the particle sizer (or to the gas analyzer) is clearly turbulent, and interactions with the wall are probable. The results are in agreement with previous findings from laminar jets in cross-flow. Guidelines for optimization of the sampling conditions are suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Benefits of controlled inclination for contactless transport by squeeze-film levitation Investigating cohesive sediment dynamics in open waters via grain-resolved simulations Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies Competing effects of buoyancy-driven and electrothermal flows for Joule heating-induced transport in microchannels Effects of prey capture on the swimming and feeding performance of choanoflagellates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1