你现在能听到我说话吗?智能手机使用的短暂增加增强了与任务无关的音调的神经处理

Q4 Neuroscience Neuroimage. Reports Pub Date : 2022-12-01 DOI:10.1016/j.ynirp.2022.100131
Mark van de Ruit , Arko Ghosh
{"title":"你现在能听到我说话吗?智能手机使用的短暂增加增强了与任务无关的音调的神经处理","authors":"Mark van de Ruit ,&nbsp;Arko Ghosh","doi":"10.1016/j.ynirp.2022.100131","DOIUrl":null,"url":null,"abstract":"<div><p>According to popular belief when engaged on the smartphone surrounding information is ignored. However, emerging ideas based on laboratory-designed tasks suggest that the processing of task-irrelevant (distractor) information is enhanced when cognitive load is high as anticipated during intense periods of smartphone usage. Here we address the neural processing of task-irrelevant auditory tones while interacting with the smartphone touchscreen. We analyzed neural activity (EEG) while people (N = 24) were seated in public spaces and used their smartphones for ∼1.5 h. During this period, the number of touchscreen interactions spontaneously varied from one moment to another. The central and frontal theta-band (4–8 Hz) oscillations, an index of cognitive load, increased proportionally to the number of interactions. Moreover, an index of excitation:inhibition balance derived from the aperiodic signal components increased with the interactions. The auditory tones resulted in prominent evoked potentials with peaks at ∼50 ms, ∼100 ms, and ∼200 ms, reflecting the different cortical information processing stages. Of these, the ∼100 ms component was specifically related to the number of interactions such that the higher the number of interactions, the larger the neural signal amplitudes. Contrary to the popular notions but in keeping with emerging ideas on cognitive load, auditory information processing is enhanced with increased smartphone usage. In daily life, neural processing of the surroundings is partly shaped by the immediate cognitive demands imposed by the smartphone.</p></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"2 4","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666956022000551/pdfft?md5=787d3f445140da68e5c666c047c6e133&pid=1-s2.0-S2666956022000551-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Can you hear me now? Momentary increase in smartphone usage enhances neural processing of task-irrelevant sound tones\",\"authors\":\"Mark van de Ruit ,&nbsp;Arko Ghosh\",\"doi\":\"10.1016/j.ynirp.2022.100131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>According to popular belief when engaged on the smartphone surrounding information is ignored. However, emerging ideas based on laboratory-designed tasks suggest that the processing of task-irrelevant (distractor) information is enhanced when cognitive load is high as anticipated during intense periods of smartphone usage. Here we address the neural processing of task-irrelevant auditory tones while interacting with the smartphone touchscreen. We analyzed neural activity (EEG) while people (N = 24) were seated in public spaces and used their smartphones for ∼1.5 h. During this period, the number of touchscreen interactions spontaneously varied from one moment to another. The central and frontal theta-band (4–8 Hz) oscillations, an index of cognitive load, increased proportionally to the number of interactions. Moreover, an index of excitation:inhibition balance derived from the aperiodic signal components increased with the interactions. The auditory tones resulted in prominent evoked potentials with peaks at ∼50 ms, ∼100 ms, and ∼200 ms, reflecting the different cortical information processing stages. Of these, the ∼100 ms component was specifically related to the number of interactions such that the higher the number of interactions, the larger the neural signal amplitudes. Contrary to the popular notions but in keeping with emerging ideas on cognitive load, auditory information processing is enhanced with increased smartphone usage. In daily life, neural processing of the surroundings is partly shaped by the immediate cognitive demands imposed by the smartphone.</p></div>\",\"PeriodicalId\":74277,\"journal\":{\"name\":\"Neuroimage. Reports\",\"volume\":\"2 4\",\"pages\":\"Article 100131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666956022000551/pdfft?md5=787d3f445140da68e5c666c047c6e133&pid=1-s2.0-S2666956022000551-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage. Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666956022000551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666956022000551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

摘要

人们普遍认为,当人们沉迷于智能手机时,周围的信息会被忽略。然而,基于实验室设计的任务的新观点表明,当智能手机密集使用期间的认知负荷较高时,与任务无关(干扰物)信息的处理会得到加强。在这里,我们研究了与智能手机触摸屏交互时与任务无关的听觉音调的神经处理。当人们(N = 24)坐在公共场所并使用智能手机约1.5小时时,我们分析了神经活动(EEG)。在此期间,触屏互动的次数自发地随时间变化。作为认知负荷指标的中央和额叶θ波段(4-8赫兹)振荡,随着互动次数的增加而成比例地增加。此外,由非周期信号分量导出的激发-抑制平衡指数随着相互作用的增加而增加。听觉音调导致诱发电位在~ 50 ms、~ 100 ms和~ 200 ms出现突出的峰值,反映了皮层信息加工的不同阶段。其中,~ 100 ms分量与相互作用的数量特别相关,因此相互作用的数量越多,神经信号的幅度就越大。与流行的观念相反,但与认知负荷的新兴观点保持一致,听觉信息处理随着智能手机使用的增加而增强。在日常生活中,对周围环境的神经处理在一定程度上受到智能手机施加的即时认知需求的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can you hear me now? Momentary increase in smartphone usage enhances neural processing of task-irrelevant sound tones

According to popular belief when engaged on the smartphone surrounding information is ignored. However, emerging ideas based on laboratory-designed tasks suggest that the processing of task-irrelevant (distractor) information is enhanced when cognitive load is high as anticipated during intense periods of smartphone usage. Here we address the neural processing of task-irrelevant auditory tones while interacting with the smartphone touchscreen. We analyzed neural activity (EEG) while people (N = 24) were seated in public spaces and used their smartphones for ∼1.5 h. During this period, the number of touchscreen interactions spontaneously varied from one moment to another. The central and frontal theta-band (4–8 Hz) oscillations, an index of cognitive load, increased proportionally to the number of interactions. Moreover, an index of excitation:inhibition balance derived from the aperiodic signal components increased with the interactions. The auditory tones resulted in prominent evoked potentials with peaks at ∼50 ms, ∼100 ms, and ∼200 ms, reflecting the different cortical information processing stages. Of these, the ∼100 ms component was specifically related to the number of interactions such that the higher the number of interactions, the larger the neural signal amplitudes. Contrary to the popular notions but in keeping with emerging ideas on cognitive load, auditory information processing is enhanced with increased smartphone usage. In daily life, neural processing of the surroundings is partly shaped by the immediate cognitive demands imposed by the smartphone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
期刊最新文献
Measuring cognitive load in multitasking using mobile fNIRS MRI-guided clustering of patients with mild dementia due to Alzheimer's disease using self-organizing maps Evaluating state-based network dynamics in anhedonia Unresponsiveness induced by sevoflurane and propofol is associated with reduced basal forebrain cholinergic nuclei functional connectivity in humans, a pilot exploratory study Increased functional connectivity of amygdalar-frontal pathways in patients with alcohol use disorder and childhood trauma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1