F. Benmessaoud, V. Velay, M. Cheikh, V. Vidal, C. Boher, F. Rezai-Aria
{"title":"显微组织特征对多晶Ti-6Al-4V合金力学行为影响的多尺度数值分析","authors":"F. Benmessaoud, V. Velay, M. Cheikh, V. Vidal, C. Boher, F. Rezai-Aria","doi":"10.24423/ENGTRANS.1014.20190615","DOIUrl":null,"url":null,"abstract":"The present work aims to model the influence of microstructural features of Ti-6Al-4V titanium alloy on its mechanical behavior. A multi-scale approach based on crystal plasticity is considered. The elasto-viscoplastic constitutive equations of Meric-Cailletaud are modified to take into consideration the effect of the grain size by introducing the Hall-Petch relationship at the local scale. This modified model is coupled with finite element calculations under small strain assumption to simulate the monotonic mechanical behavior of Ti-6A-4V at local and global scales. It is shown that the mechanical behavior of Ti-6Al-4V is drastically dependent upon the material features. Strong crystallographic texture can result in the formation \nof hardened and less hardened areas. Moreover, by increasing the grain size scattering, the heterogeneously deformed areas are multiplied. By decreasing the average grain size, the yield strength increases. It is observed that the effects of grain size, grain size scattering and crystallographic texture are coupled.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"67 1","pages":"227-242"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Scale Numerical Analysis of the Effect of Microstructural Features on the Mechanical Behavior of Polycrystalline Ti-6Al-4V Alloy\",\"authors\":\"F. Benmessaoud, V. Velay, M. Cheikh, V. Vidal, C. Boher, F. Rezai-Aria\",\"doi\":\"10.24423/ENGTRANS.1014.20190615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work aims to model the influence of microstructural features of Ti-6Al-4V titanium alloy on its mechanical behavior. A multi-scale approach based on crystal plasticity is considered. The elasto-viscoplastic constitutive equations of Meric-Cailletaud are modified to take into consideration the effect of the grain size by introducing the Hall-Petch relationship at the local scale. This modified model is coupled with finite element calculations under small strain assumption to simulate the monotonic mechanical behavior of Ti-6A-4V at local and global scales. It is shown that the mechanical behavior of Ti-6Al-4V is drastically dependent upon the material features. Strong crystallographic texture can result in the formation \\nof hardened and less hardened areas. Moreover, by increasing the grain size scattering, the heterogeneously deformed areas are multiplied. By decreasing the average grain size, the yield strength increases. It is observed that the effects of grain size, grain size scattering and crystallographic texture are coupled.\",\"PeriodicalId\":38552,\"journal\":{\"name\":\"Engineering Transactions\",\"volume\":\"67 1\",\"pages\":\"227-242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/ENGTRANS.1014.20190615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1014.20190615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Multi-Scale Numerical Analysis of the Effect of Microstructural Features on the Mechanical Behavior of Polycrystalline Ti-6Al-4V Alloy
The present work aims to model the influence of microstructural features of Ti-6Al-4V titanium alloy on its mechanical behavior. A multi-scale approach based on crystal plasticity is considered. The elasto-viscoplastic constitutive equations of Meric-Cailletaud are modified to take into consideration the effect of the grain size by introducing the Hall-Petch relationship at the local scale. This modified model is coupled with finite element calculations under small strain assumption to simulate the monotonic mechanical behavior of Ti-6A-4V at local and global scales. It is shown that the mechanical behavior of Ti-6Al-4V is drastically dependent upon the material features. Strong crystallographic texture can result in the formation
of hardened and less hardened areas. Moreover, by increasing the grain size scattering, the heterogeneously deformed areas are multiplied. By decreasing the average grain size, the yield strength increases. It is observed that the effects of grain size, grain size scattering and crystallographic texture are coupled.
期刊介绍:
Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.