J. T. Sousa, María de Luna, Israel Nunes Henrique, V. Leite, W. Lopes, H. Pearson
{"title":"用于农村卫生的紧凑型污水处理系统","authors":"J. T. Sousa, María de Luna, Israel Nunes Henrique, V. Leite, W. Lopes, H. Pearson","doi":"10.4090/juee.2020.v14n1.078086","DOIUrl":null,"url":null,"abstract":"The combination of anaerobic pre-treatment and conventional aerobic technologies in a single compact unit has the potential to afford practical, sustainable and low-cost systems for the decentralized treatment of sewage. The aims of the present study were (i) to determine the efficiencies of a single-family compact (SFC) and a multi-family compact (MFC) station in removing organic matter from domestic sewage, and (ii) to investigate the behavior of aerobic intermittent sand filters (ISFs) regarding nitrification. The SFC station consisted of an upflow anaerobic sludge blanket reactor, an anaerobic upflow bed filter and an aerobic ISF, while the MFC station comprised a septic tank and two ISFs. The mean efficiencies for the removal of total chemical oxygen demand, total suspended solids and total Kjeldahl nitrogen were, respectively, 90, 93 and 75% for the SFC and 87, 91% and 74% for the MFC with ISFs operated at hydraulic loading rates of 380 L.m-2.day-1. The sand filters produced helminth-free effluents that complied with World Health Organization recommendations for water intended for agricultural reuse, although the geometric mean of E. coli counts (104 CFU.100 mL-1) was somewhat high, implying that the treated water was appropriate for irrigation in low-tech agriculture.","PeriodicalId":17594,"journal":{"name":"Journal of Urban and Environmental Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"COMPACT SEWAGE TREATMENT SYSTEMS FOR RURAL SANITATION\",\"authors\":\"J. T. Sousa, María de Luna, Israel Nunes Henrique, V. Leite, W. Lopes, H. Pearson\",\"doi\":\"10.4090/juee.2020.v14n1.078086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of anaerobic pre-treatment and conventional aerobic technologies in a single compact unit has the potential to afford practical, sustainable and low-cost systems for the decentralized treatment of sewage. The aims of the present study were (i) to determine the efficiencies of a single-family compact (SFC) and a multi-family compact (MFC) station in removing organic matter from domestic sewage, and (ii) to investigate the behavior of aerobic intermittent sand filters (ISFs) regarding nitrification. The SFC station consisted of an upflow anaerobic sludge blanket reactor, an anaerobic upflow bed filter and an aerobic ISF, while the MFC station comprised a septic tank and two ISFs. The mean efficiencies for the removal of total chemical oxygen demand, total suspended solids and total Kjeldahl nitrogen were, respectively, 90, 93 and 75% for the SFC and 87, 91% and 74% for the MFC with ISFs operated at hydraulic loading rates of 380 L.m-2.day-1. The sand filters produced helminth-free effluents that complied with World Health Organization recommendations for water intended for agricultural reuse, although the geometric mean of E. coli counts (104 CFU.100 mL-1) was somewhat high, implying that the treated water was appropriate for irrigation in low-tech agriculture.\",\"PeriodicalId\":17594,\"journal\":{\"name\":\"Journal of Urban and Environmental Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Urban and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4090/juee.2020.v14n1.078086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4090/juee.2020.v14n1.078086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
COMPACT SEWAGE TREATMENT SYSTEMS FOR RURAL SANITATION
The combination of anaerobic pre-treatment and conventional aerobic technologies in a single compact unit has the potential to afford practical, sustainable and low-cost systems for the decentralized treatment of sewage. The aims of the present study were (i) to determine the efficiencies of a single-family compact (SFC) and a multi-family compact (MFC) station in removing organic matter from domestic sewage, and (ii) to investigate the behavior of aerobic intermittent sand filters (ISFs) regarding nitrification. The SFC station consisted of an upflow anaerobic sludge blanket reactor, an anaerobic upflow bed filter and an aerobic ISF, while the MFC station comprised a septic tank and two ISFs. The mean efficiencies for the removal of total chemical oxygen demand, total suspended solids and total Kjeldahl nitrogen were, respectively, 90, 93 and 75% for the SFC and 87, 91% and 74% for the MFC with ISFs operated at hydraulic loading rates of 380 L.m-2.day-1. The sand filters produced helminth-free effluents that complied with World Health Organization recommendations for water intended for agricultural reuse, although the geometric mean of E. coli counts (104 CFU.100 mL-1) was somewhat high, implying that the treated water was appropriate for irrigation in low-tech agriculture.
期刊介绍:
Journal of Urban and Environmental Engineering (JUEE) provides a forum for original papers and for the exchange of information and views on significant developments in urban and environmental engineering worldwide. The scope of the journal includes: (a) Water Resources and Waste Management [...] (b) Constructions and Environment[...] (c) Urban Design[...] (d) Transportation Engineering[...] The Editors welcome original papers, scientific notes and discussions, in English, in those and related topics. All papers submitted to the Journal are peer reviewed by an international panel of Associate Editors and other experts. Authors are encouraged to suggest potential referees with their submission. Authors will have to confirm that the work, or any part of it, has not been published before and is not presently being considered for publication elsewhere.