B. Sababha, Amjed Al-mousa, Remah Baniyounisse, Jawad Bdour
{"title":"基于采样的无人机空中交通集成、路径规划与避碰","authors":"B. Sababha, Amjed Al-mousa, Remah Baniyounisse, Jawad Bdour","doi":"10.1177/17298806221086431","DOIUrl":null,"url":null,"abstract":"Unmanned aircraft or drones as they are sometimes called are continuing to become part of more real-life applications. The integration of unmanned aerial vehicles in public airspace is becoming an important issue that should be addressed. As the number of unmanned aerial vehicles and their applications are largely increasing, air traffic with more unmanned aircraft has to be given more attention to prevent collisions and maintain safe skies. Unmanned aerial vehicle air traffic integration and regulation has become a priority to different regulatory agencies and has become of greater interest for many researchers all around the world. In this research, a sampling-based air traffic integration, path planning, and collision avoidance approach is presented. The proposed algorithm expands an existing 2D sampling-based approach. The original 2D approach deals with only two unmanned aircraft. Each of the two aircraft shares location information with a ground-based path planner computer, which would send back the avoidance waypoints after performing the 2D sampling. The algorithm proposed in this article can handle any number of drones in the 3D space by performing either 2D or 3D sampling. The proposed work shows a 10-fold enhancement in terms of the number of unmanned aerial vehicle collisions. The presented results also contribute to enabling a better understanding of what is expected of integrating more drones in dense skies.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sampling-based unmanned aerial vehicle air traffic integration, path planning, and collision avoidance\",\"authors\":\"B. Sababha, Amjed Al-mousa, Remah Baniyounisse, Jawad Bdour\",\"doi\":\"10.1177/17298806221086431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aircraft or drones as they are sometimes called are continuing to become part of more real-life applications. The integration of unmanned aerial vehicles in public airspace is becoming an important issue that should be addressed. As the number of unmanned aerial vehicles and their applications are largely increasing, air traffic with more unmanned aircraft has to be given more attention to prevent collisions and maintain safe skies. Unmanned aerial vehicle air traffic integration and regulation has become a priority to different regulatory agencies and has become of greater interest for many researchers all around the world. In this research, a sampling-based air traffic integration, path planning, and collision avoidance approach is presented. The proposed algorithm expands an existing 2D sampling-based approach. The original 2D approach deals with only two unmanned aircraft. Each of the two aircraft shares location information with a ground-based path planner computer, which would send back the avoidance waypoints after performing the 2D sampling. The algorithm proposed in this article can handle any number of drones in the 3D space by performing either 2D or 3D sampling. The proposed work shows a 10-fold enhancement in terms of the number of unmanned aerial vehicle collisions. The presented results also contribute to enabling a better understanding of what is expected of integrating more drones in dense skies.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221086431\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221086431","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Sampling-based unmanned aerial vehicle air traffic integration, path planning, and collision avoidance
Unmanned aircraft or drones as they are sometimes called are continuing to become part of more real-life applications. The integration of unmanned aerial vehicles in public airspace is becoming an important issue that should be addressed. As the number of unmanned aerial vehicles and their applications are largely increasing, air traffic with more unmanned aircraft has to be given more attention to prevent collisions and maintain safe skies. Unmanned aerial vehicle air traffic integration and regulation has become a priority to different regulatory agencies and has become of greater interest for many researchers all around the world. In this research, a sampling-based air traffic integration, path planning, and collision avoidance approach is presented. The proposed algorithm expands an existing 2D sampling-based approach. The original 2D approach deals with only two unmanned aircraft. Each of the two aircraft shares location information with a ground-based path planner computer, which would send back the avoidance waypoints after performing the 2D sampling. The algorithm proposed in this article can handle any number of drones in the 3D space by performing either 2D or 3D sampling. The proposed work shows a 10-fold enhancement in terms of the number of unmanned aerial vehicle collisions. The presented results also contribute to enabling a better understanding of what is expected of integrating more drones in dense skies.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.