具有高比电容和倍率性能的三明治状壳聚糖多孔碳球/MXene复合材料

IF 20.2 Q1 MATERIALS SCIENCE, PAPER & WOOD Journal of Bioresources and Bioproducts Pub Date : 2022-02-01 DOI:10.1016/j.jobab.2021.10.001
Lansheng Wei , Weijie Deng , Shanshan Li , Zhengguo Wu , Jihai Cai , Jiwen Luo
{"title":"具有高比电容和倍率性能的三明治状壳聚糖多孔碳球/MXene复合材料","authors":"Lansheng Wei ,&nbsp;Weijie Deng ,&nbsp;Shanshan Li ,&nbsp;Zhengguo Wu ,&nbsp;Jihai Cai ,&nbsp;Jiwen Luo","doi":"10.1016/j.jobab.2021.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>The application of porous carbon microspheres derived from pure biomass in supercapacitors is restricted due to their limited reactive groups. MXene owns a combination of redox Faradic surface with good metallic conductivity and hydrophilicity, which assists to obtain high pseudocapacitance and energy density. Herein, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene was introduced to chitosan-based porous carbon microsphere (CPCM) to fabricated sandwich-like structure (CPCM/MXene) through electrostatic interaction. The Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> protected the spherical structure of CPCM. Meanwhile, CPCM hindered the reaggregation of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> by inserting in the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> layers, promoting the electrolyte migration kinetics. The synergistic effect endowed CPCM/MXene high specific capacitance of 362 F/g at current density of 0.5 A/g and acceptable cycling stability with 93.87% capacitance retention at a high current density of 10 A/g after 10,000 cycles. Furthermore, CPCM/MXene displayed a high energy density of 27.8 W/(h•kg) at 500.0 W/kg of power density. These satisfactory performances prove that combining Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene nanosheets with porous carbon microspheres is a considering method to construct a new generation electrode material of supercapacitor.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"7 1","pages":"Pages 63-72"},"PeriodicalIF":20.2000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2369969821000785/pdfft?md5=118d2cfa4ecae85d93f06b175039c119&pid=1-s2.0-S2369969821000785-main.pdf","citationCount":"72","resultStr":"{\"title\":\"Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors\",\"authors\":\"Lansheng Wei ,&nbsp;Weijie Deng ,&nbsp;Shanshan Li ,&nbsp;Zhengguo Wu ,&nbsp;Jihai Cai ,&nbsp;Jiwen Luo\",\"doi\":\"10.1016/j.jobab.2021.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of porous carbon microspheres derived from pure biomass in supercapacitors is restricted due to their limited reactive groups. MXene owns a combination of redox Faradic surface with good metallic conductivity and hydrophilicity, which assists to obtain high pseudocapacitance and energy density. Herein, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene was introduced to chitosan-based porous carbon microsphere (CPCM) to fabricated sandwich-like structure (CPCM/MXene) through electrostatic interaction. The Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> protected the spherical structure of CPCM. Meanwhile, CPCM hindered the reaggregation of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> by inserting in the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> layers, promoting the electrolyte migration kinetics. The synergistic effect endowed CPCM/MXene high specific capacitance of 362 F/g at current density of 0.5 A/g and acceptable cycling stability with 93.87% capacitance retention at a high current density of 10 A/g after 10,000 cycles. Furthermore, CPCM/MXene displayed a high energy density of 27.8 W/(h•kg) at 500.0 W/kg of power density. These satisfactory performances prove that combining Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene nanosheets with porous carbon microspheres is a considering method to construct a new generation electrode material of supercapacitor.</p></div>\",\"PeriodicalId\":52344,\"journal\":{\"name\":\"Journal of Bioresources and Bioproducts\",\"volume\":\"7 1\",\"pages\":\"Pages 63-72\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2369969821000785/pdfft?md5=118d2cfa4ecae85d93f06b175039c119&pid=1-s2.0-S2369969821000785-main.pdf\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioresources and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2369969821000785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969821000785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 72

摘要

纯生物质制备的多孔碳微球反应基团有限,限制了其在超级电容器中的应用。MXene具有氧化还原法拉第表面,具有良好的金属导电性和亲水性,有助于获得较高的赝电容和能量密度。将Ti3C2Tx MXene引入壳聚糖基多孔碳微球(CPCM)中,通过静电相互作用制备出三明治状结构(CPCM/MXene)。Ti3C2Tx保护了CPCM的球形结构。同时,CPCM通过插入Ti3C2Tx层阻碍了Ti3C2Tx的再聚集,促进了电解质迁移动力学。这种协同效应使CPCM/MXene在0.5 A/g电流密度下的比电容达到362 F/g,在10 A/g高电流密度下,循环10000次后的电容保持率为93.87%,具有良好的循环稳定性。在500.0 W/kg的功率密度下,CPCM/MXene的能量密度高达27.8 W/(h•kg)。这些令人满意的性能证明,将Ti3C2Tx MXene纳米片与多孔碳微球结合是构建新一代超级电容器电极材料的一种考虑方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors

The application of porous carbon microspheres derived from pure biomass in supercapacitors is restricted due to their limited reactive groups. MXene owns a combination of redox Faradic surface with good metallic conductivity and hydrophilicity, which assists to obtain high pseudocapacitance and energy density. Herein, Ti3C2Tx MXene was introduced to chitosan-based porous carbon microsphere (CPCM) to fabricated sandwich-like structure (CPCM/MXene) through electrostatic interaction. The Ti3C2Tx protected the spherical structure of CPCM. Meanwhile, CPCM hindered the reaggregation of Ti3C2Tx by inserting in the Ti3C2Tx layers, promoting the electrolyte migration kinetics. The synergistic effect endowed CPCM/MXene high specific capacitance of 362 F/g at current density of 0.5 A/g and acceptable cycling stability with 93.87% capacitance retention at a high current density of 10 A/g after 10,000 cycles. Furthermore, CPCM/MXene displayed a high energy density of 27.8 W/(h•kg) at 500.0 W/kg of power density. These satisfactory performances prove that combining Ti3C2Tx MXene nanosheets with porous carbon microspheres is a considering method to construct a new generation electrode material of supercapacitor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioresources and Bioproducts
Journal of Bioresources and Bioproducts Agricultural and Biological Sciences-Forestry
CiteScore
39.30
自引率
0.00%
发文量
38
审稿时长
12 weeks
期刊最新文献
Editorial Board Enhanced biomass densification pretreatment using binary chemicals for efficient lignocellulosic valorization Development of Methylene Bis-Benzotriazolyl Tetramethylbutylphenol-grafted lignin sub-microspheres loaded with TiO2 for sunscreen applications Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand Selective biomass conversion over novel designed tandem catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1