{"title":"运动编队对协同导航的影响","authors":"Mohammad Saberi Tavakkoli, G. Kahe, F. Sadeghikia","doi":"10.3846/aviation.2022.17552","DOIUrl":null,"url":null,"abstract":"The effect of formation movement on the performance of cooperative navigation is investigated in this paper. First, the inertial navigation system of each agent with a certain accuracy is modeled and simulated. Initial results showed that the navigation error of each agent increased individually over time, and this problem is more severe for agents equipped with a weaker system. Cooperative navigation is implemented for the agents to resolve this problem. It is shown that the total navigation errors are improved by observing and participating the relative distance between the agents. Various simulations and experimental tests using two real agents supported this assertation. The performance of cooperative navigation can be improved further through appropriate formation. Proper formations are investigated and evaluated through simulations. The collective covariance matrix is employed to form an objective function using an extended Kalman filter (EKF). This function has been minimized using Newton’s method, which could be the solution for the formation. The simulation results show that better accuracy can be achieved by applying the optimal formation trajectory.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE EFFECT OF MOTION FORMATION ON COOPERATIVE NAVIGATION\",\"authors\":\"Mohammad Saberi Tavakkoli, G. Kahe, F. Sadeghikia\",\"doi\":\"10.3846/aviation.2022.17552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of formation movement on the performance of cooperative navigation is investigated in this paper. First, the inertial navigation system of each agent with a certain accuracy is modeled and simulated. Initial results showed that the navigation error of each agent increased individually over time, and this problem is more severe for agents equipped with a weaker system. Cooperative navigation is implemented for the agents to resolve this problem. It is shown that the total navigation errors are improved by observing and participating the relative distance between the agents. Various simulations and experimental tests using two real agents supported this assertation. The performance of cooperative navigation can be improved further through appropriate formation. Proper formations are investigated and evaluated through simulations. The collective covariance matrix is employed to form an objective function using an extended Kalman filter (EKF). This function has been minimized using Newton’s method, which could be the solution for the formation. The simulation results show that better accuracy can be achieved by applying the optimal formation trajectory.\",\"PeriodicalId\":51910,\"journal\":{\"name\":\"Aviation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aviation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/aviation.2022.17552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/aviation.2022.17552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
THE EFFECT OF MOTION FORMATION ON COOPERATIVE NAVIGATION
The effect of formation movement on the performance of cooperative navigation is investigated in this paper. First, the inertial navigation system of each agent with a certain accuracy is modeled and simulated. Initial results showed that the navigation error of each agent increased individually over time, and this problem is more severe for agents equipped with a weaker system. Cooperative navigation is implemented for the agents to resolve this problem. It is shown that the total navigation errors are improved by observing and participating the relative distance between the agents. Various simulations and experimental tests using two real agents supported this assertation. The performance of cooperative navigation can be improved further through appropriate formation. Proper formations are investigated and evaluated through simulations. The collective covariance matrix is employed to form an objective function using an extended Kalman filter (EKF). This function has been minimized using Newton’s method, which could be the solution for the formation. The simulation results show that better accuracy can be achieved by applying the optimal formation trajectory.
期刊介绍:
CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops