David-Traian Iancu, Mihai Nan, S. Ghita, A. Florea
{"title":"基于视频生成的自动驾驶轨迹预测","authors":"David-Traian Iancu, Mihai Nan, S. Ghita, A. Florea","doi":"10.24846/v31i1y202204","DOIUrl":null,"url":null,"abstract":": Trajectory prediction for the surrounding cars is a useful task in autonomous driving for obvious reasons. The traditional methods for predicting the future trajectories of surrounding cars involved complex motion models and patterns, complex maneuvers or physical models of the car trajectories. More recent works aim to predict the future car positions by using deep learning and neural networks. In this paper, video generation models were employed, which provide an estimation of the future frames related to the car positions based on an existing video and can obtain the position of the selected cars by employing an object detection algorithm along with additional information obtained by a segmentation module that uses a semantic segmentation network. The results were validated by employing the Root Mean Square Error (RMSE) metric in order to predict the locations of the surrounding cars and estimate their depth. Apparently, this approach has never been implemented in order to obtain the trajectory and the future position of the surrounding cars in autonomous driving.","PeriodicalId":49466,"journal":{"name":"Studies in Informatics and Control","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trajectory Prediction Using Video Generation in Autonomous Driving\",\"authors\":\"David-Traian Iancu, Mihai Nan, S. Ghita, A. Florea\",\"doi\":\"10.24846/v31i1y202204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Trajectory prediction for the surrounding cars is a useful task in autonomous driving for obvious reasons. The traditional methods for predicting the future trajectories of surrounding cars involved complex motion models and patterns, complex maneuvers or physical models of the car trajectories. More recent works aim to predict the future car positions by using deep learning and neural networks. In this paper, video generation models were employed, which provide an estimation of the future frames related to the car positions based on an existing video and can obtain the position of the selected cars by employing an object detection algorithm along with additional information obtained by a segmentation module that uses a semantic segmentation network. The results were validated by employing the Root Mean Square Error (RMSE) metric in order to predict the locations of the surrounding cars and estimate their depth. Apparently, this approach has never been implemented in order to obtain the trajectory and the future position of the surrounding cars in autonomous driving.\",\"PeriodicalId\":49466,\"journal\":{\"name\":\"Studies in Informatics and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Informatics and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.24846/v31i1y202204\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Informatics and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24846/v31i1y202204","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Trajectory Prediction Using Video Generation in Autonomous Driving
: Trajectory prediction for the surrounding cars is a useful task in autonomous driving for obvious reasons. The traditional methods for predicting the future trajectories of surrounding cars involved complex motion models and patterns, complex maneuvers or physical models of the car trajectories. More recent works aim to predict the future car positions by using deep learning and neural networks. In this paper, video generation models were employed, which provide an estimation of the future frames related to the car positions based on an existing video and can obtain the position of the selected cars by employing an object detection algorithm along with additional information obtained by a segmentation module that uses a semantic segmentation network. The results were validated by employing the Root Mean Square Error (RMSE) metric in order to predict the locations of the surrounding cars and estimate their depth. Apparently, this approach has never been implemented in order to obtain the trajectory and the future position of the surrounding cars in autonomous driving.
期刊介绍:
Studies in Informatics and Control journal provides important perspectives on topics relevant to Information Technology, with an emphasis on useful applications in the most important areas of IT.
This journal is aimed at advanced practitioners and researchers in the field of IT and welcomes original contributions from scholars and professionals worldwide.
SIC is published both in print and online by the National Institute for R&D in Informatics, ICI Bucharest. Abstracts, full text and graphics of all articles in the online version of SIC are identical to the print version of the Journal.