基于小数据集的可穿戴设备集成深度学习

Taylor R. Mauldin, A. Ngu, V. Metsis, Marc E. Canby
{"title":"基于小数据集的可穿戴设备集成深度学习","authors":"Taylor R. Mauldin, A. Ngu, V. Metsis, Marc E. Canby","doi":"10.1145/3428666","DOIUrl":null,"url":null,"abstract":"This article presents an in-depth experimental study of Ensemble Deep Learning techniques on small datasets for the analysis of time-series data generated by wearable devices. Deep Learning networks generally require large datasets for training. In some health care applications, such as the real-time smartwatch-based fall detection, there are no publicly available, large, annotated datasets that can be used for training, due to the nature of the problem (i.e., a fall is not a common event). We conducted a series of offline experiments using two different datasets of simulated falls for training various ensemble models. Our offline experimental results show that an ensemble of Recurrent Neural Network (RNN) models, combined by the stacking ensemble technique, outperforms a single RNN model trained on the same data samples. Nonetheless, fall detection models trained on simulated falls and activities of daily living performed by test subjects in a controlled environment, suffer from low precision due to high false-positive rates. In this work, through a set of real-world experiments, we demonstrate that the low precision can be mitigated via the collection of false-positive feedback by the end-users. The final Ensemble RNN model, after re-training with real-world user archived data and feedback, achieved a significantly higher precision without reducing much of the recall in a real-world setting.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"2 1","pages":"1 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3428666","citationCount":"5","resultStr":"{\"title\":\"Ensemble Deep Learning on Wearables Using Small Datasets\",\"authors\":\"Taylor R. Mauldin, A. Ngu, V. Metsis, Marc E. Canby\",\"doi\":\"10.1145/3428666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an in-depth experimental study of Ensemble Deep Learning techniques on small datasets for the analysis of time-series data generated by wearable devices. Deep Learning networks generally require large datasets for training. In some health care applications, such as the real-time smartwatch-based fall detection, there are no publicly available, large, annotated datasets that can be used for training, due to the nature of the problem (i.e., a fall is not a common event). We conducted a series of offline experiments using two different datasets of simulated falls for training various ensemble models. Our offline experimental results show that an ensemble of Recurrent Neural Network (RNN) models, combined by the stacking ensemble technique, outperforms a single RNN model trained on the same data samples. Nonetheless, fall detection models trained on simulated falls and activities of daily living performed by test subjects in a controlled environment, suffer from low precision due to high false-positive rates. In this work, through a set of real-world experiments, we demonstrate that the low precision can be mitigated via the collection of false-positive feedback by the end-users. The final Ensemble RNN model, after re-training with real-world user archived data and feedback, achieved a significantly higher precision without reducing much of the recall in a real-world setting.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"2 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3428666\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3428666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3428666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文在小数据集上对集成深度学习技术进行了深入的实验研究,用于分析可穿戴设备生成的时间序列数据。深度学习网络通常需要大型数据集进行训练。在一些医疗保健应用中,例如基于实时智能手表的跌倒检测,由于问题的性质(即跌倒不是常见事件),没有公开可用的大型注释数据集可用于训练。我们使用两种不同的模拟跌倒数据集进行了一系列的离线实验,以训练各种集成模型。我们的离线实验结果表明,通过叠加集成技术结合的循环神经网络(RNN)模型集成优于在相同数据样本上训练的单个RNN模型。尽管如此,测试对象在受控环境中进行的模拟跌倒和日常生活活动训练的跌倒检测模型由于假阳性率高,精度较低。在这项工作中,通过一组现实世界的实验,我们证明了低精度可以通过收集最终用户的假正反馈来缓解。最终的集成RNN模型,在使用真实世界用户存档数据和反馈进行重新训练后,在不降低真实世界召回率的情况下,实现了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble Deep Learning on Wearables Using Small Datasets
This article presents an in-depth experimental study of Ensemble Deep Learning techniques on small datasets for the analysis of time-series data generated by wearable devices. Deep Learning networks generally require large datasets for training. In some health care applications, such as the real-time smartwatch-based fall detection, there are no publicly available, large, annotated datasets that can be used for training, due to the nature of the problem (i.e., a fall is not a common event). We conducted a series of offline experiments using two different datasets of simulated falls for training various ensemble models. Our offline experimental results show that an ensemble of Recurrent Neural Network (RNN) models, combined by the stacking ensemble technique, outperforms a single RNN model trained on the same data samples. Nonetheless, fall detection models trained on simulated falls and activities of daily living performed by test subjects in a controlled environment, suffer from low precision due to high false-positive rates. In this work, through a set of real-world experiments, we demonstrate that the low precision can be mitigated via the collection of false-positive feedback by the end-users. The final Ensemble RNN model, after re-training with real-world user archived data and feedback, achieved a significantly higher precision without reducing much of the recall in a real-world setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1