分层对3D打印聚合物力学行为的影响

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Frattura ed Integrita Strutturale Pub Date : 2022-12-21 DOI:10.3221/igf-esis.63.03
F. Majid, T. Hachimi, H. Rhanim, R. Rhanim
{"title":"分层对3D打印聚合物力学行为的影响","authors":"F. Majid, T. Hachimi, H. Rhanim, R. Rhanim","doi":"10.3221/igf-esis.63.03","DOIUrl":null,"url":null,"abstract":" This study aims to assess the delamination effect and predict the evolution of damage in 3D printed specimens to investigate the mechanical behavior occurring due to the delamination of the layers of 3D printed thermoplastic polymers. Thus, additively manufactured ABS samples are subjected to tensile tests Made for different thicknesses of specimens by subtracting layer by layer. The mechanical behavior of the layers and the adherence between the layers are studied in this paper. The deposition of the layers is modeled as a laminated material. The delamination effect on the resistance of printed material is evaluated experimentally by comparing the mechanical characteristics of homogenously printed specimens, and laminated layers gathered together. Thus, the global resistance is reduced significantly due to the lack of adherence. Besides, crack growth, and critical intensity factor investigation are based on damage and rupture mechanics theories. Furthermore, the results allowed us to evaluate the energy behavior of the 3D printed material subjected to static loads and subsequently predict the evolution of the damage and find out the impact of layers' delamination. Indeed, we determined three stages of damage along with the critical life fraction leading to the failure of the specimen.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delamination effect on the mechanical behavior of 3D printed polymers\",\"authors\":\"F. Majid, T. Hachimi, H. Rhanim, R. Rhanim\",\"doi\":\"10.3221/igf-esis.63.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" This study aims to assess the delamination effect and predict the evolution of damage in 3D printed specimens to investigate the mechanical behavior occurring due to the delamination of the layers of 3D printed thermoplastic polymers. Thus, additively manufactured ABS samples are subjected to tensile tests Made for different thicknesses of specimens by subtracting layer by layer. The mechanical behavior of the layers and the adherence between the layers are studied in this paper. The deposition of the layers is modeled as a laminated material. The delamination effect on the resistance of printed material is evaluated experimentally by comparing the mechanical characteristics of homogenously printed specimens, and laminated layers gathered together. Thus, the global resistance is reduced significantly due to the lack of adherence. Besides, crack growth, and critical intensity factor investigation are based on damage and rupture mechanics theories. Furthermore, the results allowed us to evaluate the energy behavior of the 3D printed material subjected to static loads and subsequently predict the evolution of the damage and find out the impact of layers' delamination. Indeed, we determined three stages of damage along with the critical life fraction leading to the failure of the specimen.\",\"PeriodicalId\":38546,\"journal\":{\"name\":\"Frattura ed Integrita Strutturale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frattura ed Integrita Strutturale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/igf-esis.63.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrita Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.63.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估3D打印样品的分层效应并预测损伤的演变,以研究由于3D打印热塑性聚合物层的分层而发生的力学行为。因此,增材制造的ABS试样通过逐层减法对不同厚度的试样进行拉伸试验。本文研究了各层的力学行为和层间的黏附性。层的沉积被模拟为层压材料。通过比较均匀打印样品和叠层材料聚集在一起的力学特性,实验评估了分层对打印材料阻力的影响。因此,由于缺乏依从性,全球耐药性大大降低。此外,裂纹扩展和临界强度因子的研究基于损伤和破裂力学理论。此外,该结果使我们能够评估3D打印材料在静载荷下的能量行为,从而预测损伤的演变,并找出层分层的影响。事实上,我们确定了三个阶段的损伤以及导致试样失效的临界寿命分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delamination effect on the mechanical behavior of 3D printed polymers
 This study aims to assess the delamination effect and predict the evolution of damage in 3D printed specimens to investigate the mechanical behavior occurring due to the delamination of the layers of 3D printed thermoplastic polymers. Thus, additively manufactured ABS samples are subjected to tensile tests Made for different thicknesses of specimens by subtracting layer by layer. The mechanical behavior of the layers and the adherence between the layers are studied in this paper. The deposition of the layers is modeled as a laminated material. The delamination effect on the resistance of printed material is evaluated experimentally by comparing the mechanical characteristics of homogenously printed specimens, and laminated layers gathered together. Thus, the global resistance is reduced significantly due to the lack of adherence. Besides, crack growth, and critical intensity factor investigation are based on damage and rupture mechanics theories. Furthermore, the results allowed us to evaluate the energy behavior of the 3D printed material subjected to static loads and subsequently predict the evolution of the damage and find out the impact of layers' delamination. Indeed, we determined three stages of damage along with the critical life fraction leading to the failure of the specimen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frattura ed Integrita Strutturale
Frattura ed Integrita Strutturale Engineering-Mechanical Engineering
CiteScore
3.40
自引率
0.00%
发文量
114
审稿时长
6 weeks
期刊最新文献
Investigation on Microstructure, Hardness, Wear behavior and Fracture Surface Analysis of Strontium (Sr) and Calcium (Ca) Content A357 Modified Alloy by Statistical Technique Fatigue life investigation of notched TC4 specimens subjected to different patterns of laser shock peening High carbon steel/Inconel 718 bimetallic parts produced via Fused Filament Fabrication and Sintering Microstructure Characterization, Mechanical and Wear Behavior of Silicon Carbide and Neem Leaf Powder Reinforced AL7075 Alloy hybrid MMC’s. Mechanisms for Introduction of Pseudo Ductility in Fiber Reinforced Polymer Composites- A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1