使用混合序列实现去偏估计

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2020-10-02 DOI:10.1515/mcma-2020-2075
Arun Kumar Polala, G. Ökten
{"title":"使用混合序列实现去偏估计","authors":"Arun Kumar Polala, G. Ökten","doi":"10.1515/mcma-2020-2075","DOIUrl":null,"url":null,"abstract":"Abstract We describe an implementation of the de-biased estimator using mixed sequences; these are sequences obtained from pseudorandom and low-discrepancy sequences. We use this implementation to numerically solve some stochastic differential equations from computational finance. The mixed sequences, when combined with Brownian bridge or principal component analysis constructions, offer convergence rates significantly better than the Monte Carlo implementation.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"293 - 301"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2075","citationCount":"1","resultStr":"{\"title\":\"Implementing de-biased estimators using mixed sequences\",\"authors\":\"Arun Kumar Polala, G. Ökten\",\"doi\":\"10.1515/mcma-2020-2075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We describe an implementation of the de-biased estimator using mixed sequences; these are sequences obtained from pseudorandom and low-discrepancy sequences. We use this implementation to numerically solve some stochastic differential equations from computational finance. The mixed sequences, when combined with Brownian bridge or principal component analysis constructions, offer convergence rates significantly better than the Monte Carlo implementation.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"26 1\",\"pages\":\"293 - 301\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mcma-2020-2075\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2020-2075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2020-2075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们描述了使用混合序列的去偏估计器的实现;这些是从伪随机序列和低差异序列获得的序列。我们使用这种实现来数值求解计算金融中的一些随机微分方程。当混合序列与布朗桥或主成分分析结构相结合时,其收敛速度明显优于蒙特卡罗实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing de-biased estimators using mixed sequences
Abstract We describe an implementation of the de-biased estimator using mixed sequences; these are sequences obtained from pseudorandom and low-discrepancy sequences. We use this implementation to numerically solve some stochastic differential equations from computational finance. The mixed sequences, when combined with Brownian bridge or principal component analysis constructions, offer convergence rates significantly better than the Monte Carlo implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system Random walk on spheres method for solving anisotropic transient diffusion problems and flux calculations Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition On the estimation of periodic signals in the diffusion process using a high-frequency scheme Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1