{"title":"前沿报道——可持续电化学合成的多相电催化剂","authors":"Z. Schiffer","doi":"10.1149/2.f05231if","DOIUrl":null,"url":null,"abstract":"One key strategy toward decarbonizing chemical synthesis is to reduce reliance on fossil fuels as an energy source. The increased availability of renewable electricity from sources such as solar and wind offers opportunities to both reduce reliance on fossil fuels and electrify chemical manufacturing. While there are many possible uses for renewable electricity, such as joule heating of reactors, one approach is to use these electrons to make and break chemical bonds directly via electrochemistry.","PeriodicalId":47157,"journal":{"name":"Electrochemical Society Interface","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reports From The Frontier-Heterogeneous Electrocatalysts for Sustainable Electrochemical Synthesis\",\"authors\":\"Z. Schiffer\",\"doi\":\"10.1149/2.f05231if\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One key strategy toward decarbonizing chemical synthesis is to reduce reliance on fossil fuels as an energy source. The increased availability of renewable electricity from sources such as solar and wind offers opportunities to both reduce reliance on fossil fuels and electrify chemical manufacturing. While there are many possible uses for renewable electricity, such as joule heating of reactors, one approach is to use these electrons to make and break chemical bonds directly via electrochemistry.\",\"PeriodicalId\":47157,\"journal\":{\"name\":\"Electrochemical Society Interface\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical Society Interface\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.f05231if\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical Society Interface","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.f05231if","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Reports From The Frontier-Heterogeneous Electrocatalysts for Sustainable Electrochemical Synthesis
One key strategy toward decarbonizing chemical synthesis is to reduce reliance on fossil fuels as an energy source. The increased availability of renewable electricity from sources such as solar and wind offers opportunities to both reduce reliance on fossil fuels and electrify chemical manufacturing. While there are many possible uses for renewable electricity, such as joule heating of reactors, one approach is to use these electrons to make and break chemical bonds directly via electrochemistry.