{"title":"空间激光通信APT系统几何误差指向误差的分析与修正","authors":"Furui Zhang, P. Ruan, Junfeng Han, Yao Li","doi":"10.1080/15599612.2021.1895923","DOIUrl":null,"url":null,"abstract":"Abstract The geometrical error caused pointing error is an inevitable problem in space satellite laser communication terminals which can affect the pointing accuracy of the APT (acquisition pointing and tracking) system greatly, in order to facilitate the assembling of the APT system and improve the performance of the laser communication system, the geometrical error sensitivity about the APT pointing accuracy is analyzed based on multi-body kinematics method in this paper, the error transformation matrix is derived and the geometrical error is analyzed, the simulation results provide some pointing error distribution regulars which are conductive to assembling. Based on the above research, the geometrical error correction experiment is performed and the pointing accuracy of the APT system is tested, the expectation value of the pointing error can reach 29.9 µrad which is greatly improved. This research can provide technical references for the design and analysis of space laser communication terminals.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"15 1","pages":"19 - 31"},"PeriodicalIF":6.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2021.1895923","citationCount":"2","resultStr":"{\"title\":\"Analysis and correction of geometrical error-induced pointing errors of a space laser communication APT system\",\"authors\":\"Furui Zhang, P. Ruan, Junfeng Han, Yao Li\",\"doi\":\"10.1080/15599612.2021.1895923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The geometrical error caused pointing error is an inevitable problem in space satellite laser communication terminals which can affect the pointing accuracy of the APT (acquisition pointing and tracking) system greatly, in order to facilitate the assembling of the APT system and improve the performance of the laser communication system, the geometrical error sensitivity about the APT pointing accuracy is analyzed based on multi-body kinematics method in this paper, the error transformation matrix is derived and the geometrical error is analyzed, the simulation results provide some pointing error distribution regulars which are conductive to assembling. Based on the above research, the geometrical error correction experiment is performed and the pointing accuracy of the APT system is tested, the expectation value of the pointing error can reach 29.9 µrad which is greatly improved. This research can provide technical references for the design and analysis of space laser communication terminals.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"15 1\",\"pages\":\"19 - 31\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15599612.2021.1895923\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2021.1895923\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2021.1895923","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis and correction of geometrical error-induced pointing errors of a space laser communication APT system
Abstract The geometrical error caused pointing error is an inevitable problem in space satellite laser communication terminals which can affect the pointing accuracy of the APT (acquisition pointing and tracking) system greatly, in order to facilitate the assembling of the APT system and improve the performance of the laser communication system, the geometrical error sensitivity about the APT pointing accuracy is analyzed based on multi-body kinematics method in this paper, the error transformation matrix is derived and the geometrical error is analyzed, the simulation results provide some pointing error distribution regulars which are conductive to assembling. Based on the above research, the geometrical error correction experiment is performed and the pointing accuracy of the APT system is tested, the expectation value of the pointing error can reach 29.9 µrad which is greatly improved. This research can provide technical references for the design and analysis of space laser communication terminals.
期刊介绍:
International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics.
Topics you can submit include, but are not limited to:
-Adaptive optics-
Optomechanics-
Machine vision, tracking and control-
Image-based micro-/nano- manipulation-
Control engineering for optomechatronics-
Optical metrology-
Optical sensors and light-based actuators-
Optomechatronics for astronomy and space applications-
Optical-based inspection and fault diagnosis-
Micro-/nano- optomechanical systems (MOEMS)-
Optofluidics-
Optical assembly and packaging-
Optical and vision-based manufacturing, processes, monitoring, and control-
Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)