空间激光通信APT系统几何误差指向误差的分析与修正

IF 6.7 3区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Optomechatronics Pub Date : 2021-01-01 DOI:10.1080/15599612.2021.1895923
Furui Zhang, P. Ruan, Junfeng Han, Yao Li
{"title":"空间激光通信APT系统几何误差指向误差的分析与修正","authors":"Furui Zhang, P. Ruan, Junfeng Han, Yao Li","doi":"10.1080/15599612.2021.1895923","DOIUrl":null,"url":null,"abstract":"Abstract The geometrical error caused pointing error is an inevitable problem in space satellite laser communication terminals which can affect the pointing accuracy of the APT (acquisition pointing and tracking) system greatly, in order to facilitate the assembling of the APT system and improve the performance of the laser communication system, the geometrical error sensitivity about the APT pointing accuracy is analyzed based on multi-body kinematics method in this paper, the error transformation matrix is derived and the geometrical error is analyzed, the simulation results provide some pointing error distribution regulars which are conductive to assembling. Based on the above research, the geometrical error correction experiment is performed and the pointing accuracy of the APT system is tested, the expectation value of the pointing error can reach 29.9 µrad which is greatly improved. This research can provide technical references for the design and analysis of space laser communication terminals.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"15 1","pages":"19 - 31"},"PeriodicalIF":6.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2021.1895923","citationCount":"2","resultStr":"{\"title\":\"Analysis and correction of geometrical error-induced pointing errors of a space laser communication APT system\",\"authors\":\"Furui Zhang, P. Ruan, Junfeng Han, Yao Li\",\"doi\":\"10.1080/15599612.2021.1895923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The geometrical error caused pointing error is an inevitable problem in space satellite laser communication terminals which can affect the pointing accuracy of the APT (acquisition pointing and tracking) system greatly, in order to facilitate the assembling of the APT system and improve the performance of the laser communication system, the geometrical error sensitivity about the APT pointing accuracy is analyzed based on multi-body kinematics method in this paper, the error transformation matrix is derived and the geometrical error is analyzed, the simulation results provide some pointing error distribution regulars which are conductive to assembling. Based on the above research, the geometrical error correction experiment is performed and the pointing accuracy of the APT system is tested, the expectation value of the pointing error can reach 29.9 µrad which is greatly improved. This research can provide technical references for the design and analysis of space laser communication terminals.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"15 1\",\"pages\":\"19 - 31\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15599612.2021.1895923\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2021.1895923\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2021.1895923","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

几何误差引起的指向误差是空间卫星激光通信终端中不可避免的问题,它会极大地影响APT(采集指向与跟踪)系统的指向精度。为了便于APT系统的装配和提高激光通信系统的性能,本文基于多体运动学方法对APT指向精度的几何误差敏感性进行了分析。推导了误差变换矩阵,并对几何误差进行了分析,仿真结果提供了一些有利于装配的指向误差分布规律。在上述研究的基础上,进行了几何误差校正实验,并对APT系统的指向精度进行了测试,指向误差期望值可达到29.9µrad,大大提高了指向精度。该研究可为空间激光通信终端的设计和分析提供技术参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and correction of geometrical error-induced pointing errors of a space laser communication APT system
Abstract The geometrical error caused pointing error is an inevitable problem in space satellite laser communication terminals which can affect the pointing accuracy of the APT (acquisition pointing and tracking) system greatly, in order to facilitate the assembling of the APT system and improve the performance of the laser communication system, the geometrical error sensitivity about the APT pointing accuracy is analyzed based on multi-body kinematics method in this paper, the error transformation matrix is derived and the geometrical error is analyzed, the simulation results provide some pointing error distribution regulars which are conductive to assembling. Based on the above research, the geometrical error correction experiment is performed and the pointing accuracy of the APT system is tested, the expectation value of the pointing error can reach 29.9 µrad which is greatly improved. This research can provide technical references for the design and analysis of space laser communication terminals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optomechatronics
International Journal of Optomechatronics 工程技术-工程:电子与电气
CiteScore
9.30
自引率
0.00%
发文量
3
审稿时长
3 months
期刊介绍: International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics. Topics you can submit include, but are not limited to: -Adaptive optics- Optomechanics- Machine vision, tracking and control- Image-based micro-/nano- manipulation- Control engineering for optomechatronics- Optical metrology- Optical sensors and light-based actuators- Optomechatronics for astronomy and space applications- Optical-based inspection and fault diagnosis- Micro-/nano- optomechanical systems (MOEMS)- Optofluidics- Optical assembly and packaging- Optical and vision-based manufacturing, processes, monitoring, and control- Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)
期刊最新文献
Laboratory demonstration of single-camera PPPP wavefront sensing using neural networks Control of a quasi-static MEMS Mirror for raster scanning projection applications Resonator-based near perfect metamaterial absorber with high EMI shielding for Wi-Fi and 5G applications Optofluidic sorting of microparticles using Airy beams Review of sensing and actuation technologies – from optical MEMS and nanophotonics to photonic nanosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1