木屑纤维在土壤加固中的应用综述

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Fibers Pub Date : 2023-07-03 DOI:10.3390/fib11070058
Carlos J. Medina-Martinez, L. C. Sandoval Herazo, S. Zamora-Castro, R. Vivar-Ocampo, D. Reyes-González
{"title":"木屑纤维在土壤加固中的应用综述","authors":"Carlos J. Medina-Martinez, L. C. Sandoval Herazo, S. Zamora-Castro, R. Vivar-Ocampo, D. Reyes-González","doi":"10.3390/fib11070058","DOIUrl":null,"url":null,"abstract":"A frequent problem in geotechnics is soils with inadequate physical–mechanical properties to withstand construction work, incurring cost overruns caused by their engineering improvement. The need to improve the engineering properties of soils is not recent. The most common current alternatives are binders such as cement and lime. The climate change observed in recent decades and the uncontrolled emission of greenhouse gases have motivated geotechnical and geoenvironmental researchers to seek mechanisms for soil reinforcement from a more sustainable and environmentally friendly approach by proposing the use of recycled and waste materials. An alternative is natural fibers, which can be obtained as waste from many agro-industrial processes, due to their high availability and low cost. Sawdust, as a by-product of wood processing, has a rough texture that can generate high friction between the fiber and the matrix of the soils, leading to a significant increase in its shearing strength and bearing capacity. This concept of improving the properties of soils using natural fibers distributed randomly is inspired by the natural phenomenon of grass and/or plants that, when growing on a slope, can effectively stabilize the said slope.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Sawdust Fibers for Soil Reinforcement: A Review\",\"authors\":\"Carlos J. Medina-Martinez, L. C. Sandoval Herazo, S. Zamora-Castro, R. Vivar-Ocampo, D. Reyes-González\",\"doi\":\"10.3390/fib11070058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A frequent problem in geotechnics is soils with inadequate physical–mechanical properties to withstand construction work, incurring cost overruns caused by their engineering improvement. The need to improve the engineering properties of soils is not recent. The most common current alternatives are binders such as cement and lime. The climate change observed in recent decades and the uncontrolled emission of greenhouse gases have motivated geotechnical and geoenvironmental researchers to seek mechanisms for soil reinforcement from a more sustainable and environmentally friendly approach by proposing the use of recycled and waste materials. An alternative is natural fibers, which can be obtained as waste from many agro-industrial processes, due to their high availability and low cost. Sawdust, as a by-product of wood processing, has a rough texture that can generate high friction between the fiber and the matrix of the soils, leading to a significant increase in its shearing strength and bearing capacity. This concept of improving the properties of soils using natural fibers distributed randomly is inspired by the natural phenomenon of grass and/or plants that, when growing on a slope, can effectively stabilize the said slope.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib11070058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11070058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

土工技术中的一个常见问题是土壤的物理力学性能不足以承受施工作业,导致工程改进导致成本超支。改善土壤工程特性的需要并不是最近才有的。目前最常见的替代品是水泥和石灰等粘合剂。近几十年来观察到的气候变化和温室气体的无控制排放促使岩土工程和地质环境研究人员通过提议使用回收和废弃材料,从更可持续和环保的方法中寻求土壤加固机制。另一种选择是天然纤维,由于其高可用性和低成本,可以从许多农产工业过程中作为废物获得。木屑是木材加工的副产品,其质地粗糙,可以在纤维和土壤基质之间产生高摩擦,从而显著提高其抗剪强度和承载力。这种使用随机分布的天然纤维改善土壤性质的概念受到草和/或植物的自然现象的启发,当它们生长在斜坡上时,可以有效地稳定所述斜坡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Sawdust Fibers for Soil Reinforcement: A Review
A frequent problem in geotechnics is soils with inadequate physical–mechanical properties to withstand construction work, incurring cost overruns caused by their engineering improvement. The need to improve the engineering properties of soils is not recent. The most common current alternatives are binders such as cement and lime. The climate change observed in recent decades and the uncontrolled emission of greenhouse gases have motivated geotechnical and geoenvironmental researchers to seek mechanisms for soil reinforcement from a more sustainable and environmentally friendly approach by proposing the use of recycled and waste materials. An alternative is natural fibers, which can be obtained as waste from many agro-industrial processes, due to their high availability and low cost. Sawdust, as a by-product of wood processing, has a rough texture that can generate high friction between the fiber and the matrix of the soils, leading to a significant increase in its shearing strength and bearing capacity. This concept of improving the properties of soils using natural fibers distributed randomly is inspired by the natural phenomenon of grass and/or plants that, when growing on a slope, can effectively stabilize the said slope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fibers
Fibers Engineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍: Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins
期刊最新文献
Raman Spectra of Delignified Plant Fibers: Exploring the Impact of Xylan’s Presence on the Spectral Features of Cellulose Pulp Particle Classification Based on Optical Fiber Analysis and Machine Learning Techniques Mechanical Performance of Cementitious Materials Reinforced with Polyethylene Fibers and Carbon Nanotubes Development of Activated Carbon Textiles Produced from Jute and Cotton Wastes for Electromagnetic Shielding Applications Mechanical Properties of 3D-Printed Carbon Fiber-Reinforced Cement Mortar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1