{"title":"语音增强:不同深度学习方法综述","authors":"Sivaramakrishna Yechuri, Sunny Dayal Vanabathina","doi":"10.1142/s021946782550024x","DOIUrl":null,"url":null,"abstract":"Speech enhancement methods differ depending on the degree of degradation and noise in the speech signal, so research in the field is still difficult, especially when dealing with residual and background noise, which is highly transient. Numerous deep learning networks have been developed that provide promising results for improving the perceptual quality and intelligibility of noisy speech. Innovation and research in speech enhancement have been opened up by the power of deep learning techniques with implications across a wide range of real time applications. By reviewing the important datasets, feature extraction methods, deep learning models, training algorithms and evaluation metrics for speech enhancement, this paper provides a comprehensive overview. We begin by tracing the evolution of speech enhancement research, from early approaches to recent advances in deep learning architectures. By analyzing and comparing the approaches to solving speech enhancement challenges, we categorize them according to their strengths and weaknesses. Moreover, we discuss the challenges and future directions of deep learning in speech enhancement, including the demand for parameter-efficient models for speech enhancement. The purpose of this paper is to examine the development of the field, compare and contrast different approaches, and highlight future directions as well as challenges for further research.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speech Enhancement: A Review of Different Deep Learning Methods\",\"authors\":\"Sivaramakrishna Yechuri, Sunny Dayal Vanabathina\",\"doi\":\"10.1142/s021946782550024x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech enhancement methods differ depending on the degree of degradation and noise in the speech signal, so research in the field is still difficult, especially when dealing with residual and background noise, which is highly transient. Numerous deep learning networks have been developed that provide promising results for improving the perceptual quality and intelligibility of noisy speech. Innovation and research in speech enhancement have been opened up by the power of deep learning techniques with implications across a wide range of real time applications. By reviewing the important datasets, feature extraction methods, deep learning models, training algorithms and evaluation metrics for speech enhancement, this paper provides a comprehensive overview. We begin by tracing the evolution of speech enhancement research, from early approaches to recent advances in deep learning architectures. By analyzing and comparing the approaches to solving speech enhancement challenges, we categorize them according to their strengths and weaknesses. Moreover, we discuss the challenges and future directions of deep learning in speech enhancement, including the demand for parameter-efficient models for speech enhancement. The purpose of this paper is to examine the development of the field, compare and contrast different approaches, and highlight future directions as well as challenges for further research.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021946782550024x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021946782550024x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Speech Enhancement: A Review of Different Deep Learning Methods
Speech enhancement methods differ depending on the degree of degradation and noise in the speech signal, so research in the field is still difficult, especially when dealing with residual and background noise, which is highly transient. Numerous deep learning networks have been developed that provide promising results for improving the perceptual quality and intelligibility of noisy speech. Innovation and research in speech enhancement have been opened up by the power of deep learning techniques with implications across a wide range of real time applications. By reviewing the important datasets, feature extraction methods, deep learning models, training algorithms and evaluation metrics for speech enhancement, this paper provides a comprehensive overview. We begin by tracing the evolution of speech enhancement research, from early approaches to recent advances in deep learning architectures. By analyzing and comparing the approaches to solving speech enhancement challenges, we categorize them according to their strengths and weaknesses. Moreover, we discuss the challenges and future directions of deep learning in speech enhancement, including the demand for parameter-efficient models for speech enhancement. The purpose of this paper is to examine the development of the field, compare and contrast different approaches, and highlight future directions as well as challenges for further research.