选区划分不公的(同源)持续性

IF 1.7 Q2 MATHEMATICS, APPLIED Foundations of data science (Springfield, Mo.) Pub Date : 2020-07-05 DOI:10.3934/FODS.2021007
M. Duchin, Tom Needham, Thomas Weighill
{"title":"选区划分不公的(同源)持续性","authors":"M. Duchin, Tom Needham, Thomas Weighill","doi":"10.3934/FODS.2021007","DOIUrl":null,"url":null,"abstract":"We apply persistent homology, the dominant tool from the field of topological data analysis, to study electoral redistricting. Our method combines the geographic information from a political districting plan with election data to produce a persistence diagram. We are then able to visualize and analyze large ensembles of computer-generated districting plans of the type commonly used in modern redistricting research (and court challenges). We set out three applications: zoning a state at each scale of districting, comparing elections, and seeking signals of gerrymandering. Our case studies focus on redistricting in Pennsylvania and North Carolina, two states whose legal challenges to enacted plans have raised considerable public interest in the last few years. \nTo address the question of robustness of the persistence diagrams to perturbations in vote data and in district boundaries, we translate the classical stability theorem of Cohen--Steiner et al. into our setting and find that it can be phrased in a manner that is easy to interpret. We accompany the theoretical bound with an empirical demonstration to illustrate diagram stability in practice.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The (homological) persistence of gerrymandering\",\"authors\":\"M. Duchin, Tom Needham, Thomas Weighill\",\"doi\":\"10.3934/FODS.2021007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply persistent homology, the dominant tool from the field of topological data analysis, to study electoral redistricting. Our method combines the geographic information from a political districting plan with election data to produce a persistence diagram. We are then able to visualize and analyze large ensembles of computer-generated districting plans of the type commonly used in modern redistricting research (and court challenges). We set out three applications: zoning a state at each scale of districting, comparing elections, and seeking signals of gerrymandering. Our case studies focus on redistricting in Pennsylvania and North Carolina, two states whose legal challenges to enacted plans have raised considerable public interest in the last few years. \\nTo address the question of robustness of the persistence diagrams to perturbations in vote data and in district boundaries, we translate the classical stability theorem of Cohen--Steiner et al. into our setting and find that it can be phrased in a manner that is easy to interpret. We accompany the theoretical bound with an empirical demonstration to illustrate diagram stability in practice.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/FODS.2021007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/FODS.2021007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

我们应用拓扑数据分析领域的主要工具持久同源性来研究选举选区的重新划分。我们的方法将政治区划计划中的地理信息与选举数据相结合,生成持久图。然后,我们能够可视化和分析现代重新划分研究(和法庭挑战)中常用的计算机生成的大规模划分计划。我们提出了三个应用程序:按每种选区划分一个州,比较选举,以及寻找不公正选区划分的信号。我们的案例研究集中在宾夕法尼亚州和北卡罗来纳州的重新划分,这两个州对已颁布计划的法律挑战在过去几年中引起了相当大的公众兴趣。为了解决持久性图对投票数据和地区边界扰动的稳健性问题,我们将Cohen–Steiner等人的经典稳定性定理转化为我们的设置,并发现它可以用一种易于解释的方式来表达。我们在理论界的同时进行了实证论证,以说明图表在实践中的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The (homological) persistence of gerrymandering
We apply persistent homology, the dominant tool from the field of topological data analysis, to study electoral redistricting. Our method combines the geographic information from a political districting plan with election data to produce a persistence diagram. We are then able to visualize and analyze large ensembles of computer-generated districting plans of the type commonly used in modern redistricting research (and court challenges). We set out three applications: zoning a state at each scale of districting, comparing elections, and seeking signals of gerrymandering. Our case studies focus on redistricting in Pennsylvania and North Carolina, two states whose legal challenges to enacted plans have raised considerable public interest in the last few years. To address the question of robustness of the persistence diagrams to perturbations in vote data and in district boundaries, we translate the classical stability theorem of Cohen--Steiner et al. into our setting and find that it can be phrased in a manner that is easy to interpret. We accompany the theoretical bound with an empirical demonstration to illustrate diagram stability in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
CHATGPT FOR COMPUTATIONAL TOPOLOGY. PERSISTENT PATH LAPLACIAN. Weight set decomposition for weighted rank and rating aggregation: An interpretable and visual decision support tool Hierarchical regularization networks for sparsification based learning on noisy datasets Noise calibration for SPDEs: A case study for the rotating shallow water model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1