{"title":"中小样本多层次结构方程模型的Croon偏倚校正因子得分路径分析","authors":"Ben Kelcey, Kyle Cox, N. Dong","doi":"10.1177/1094428119879758","DOIUrl":null,"url":null,"abstract":"Maximum likelihood estimation of multilevel structural equation model (MLSEM) parameters is a preferred approach to probe theories involving latent variables in multilevel settings. Although maximum likelihood has many desirable properties, a major limitation is that it often fails to converge and can incur significant bias when implemented in studies with a small to moderate multilevel sample (e.g., fewer than 100 organizations with 10 or less individuals/organization). To address similar limitations in single-level SEM, literature has developed Croon’s bias-corrected factor score path analysis estimator that converges more regularly than maximum likelihood and delivers less biased parameter estimates with small to moderate sample sizes. We derive extensions to this framework for MLSEMs and probe the degree to which the estimator retains these advantages with small to moderate multilevel samples. The estimator emerges as a useful alternative or complement to maximum likelihood because it often outperforms maximum likelihood in small to moderate multilevel samples in terms of convergence, bias, error variance, and power. The proposed estimator is implemented as a function in R using lavaan and is illustrated using a multilevel mediation example.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"24 1","pages":"55 - 77"},"PeriodicalIF":8.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1094428119879758","citationCount":"17","resultStr":"{\"title\":\"Croon’s Bias-Corrected Factor Score Path Analysis for Small- to Moderate-Sample Multilevel Structural Equation Models\",\"authors\":\"Ben Kelcey, Kyle Cox, N. Dong\",\"doi\":\"10.1177/1094428119879758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum likelihood estimation of multilevel structural equation model (MLSEM) parameters is a preferred approach to probe theories involving latent variables in multilevel settings. Although maximum likelihood has many desirable properties, a major limitation is that it often fails to converge and can incur significant bias when implemented in studies with a small to moderate multilevel sample (e.g., fewer than 100 organizations with 10 or less individuals/organization). To address similar limitations in single-level SEM, literature has developed Croon’s bias-corrected factor score path analysis estimator that converges more regularly than maximum likelihood and delivers less biased parameter estimates with small to moderate sample sizes. We derive extensions to this framework for MLSEMs and probe the degree to which the estimator retains these advantages with small to moderate multilevel samples. The estimator emerges as a useful alternative or complement to maximum likelihood because it often outperforms maximum likelihood in small to moderate multilevel samples in terms of convergence, bias, error variance, and power. The proposed estimator is implemented as a function in R using lavaan and is illustrated using a multilevel mediation example.\",\"PeriodicalId\":19689,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\"24 1\",\"pages\":\"55 - 77\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1094428119879758\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/1094428119879758\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/1094428119879758","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Croon’s Bias-Corrected Factor Score Path Analysis for Small- to Moderate-Sample Multilevel Structural Equation Models
Maximum likelihood estimation of multilevel structural equation model (MLSEM) parameters is a preferred approach to probe theories involving latent variables in multilevel settings. Although maximum likelihood has many desirable properties, a major limitation is that it often fails to converge and can incur significant bias when implemented in studies with a small to moderate multilevel sample (e.g., fewer than 100 organizations with 10 or less individuals/organization). To address similar limitations in single-level SEM, literature has developed Croon’s bias-corrected factor score path analysis estimator that converges more regularly than maximum likelihood and delivers less biased parameter estimates with small to moderate sample sizes. We derive extensions to this framework for MLSEMs and probe the degree to which the estimator retains these advantages with small to moderate multilevel samples. The estimator emerges as a useful alternative or complement to maximum likelihood because it often outperforms maximum likelihood in small to moderate multilevel samples in terms of convergence, bias, error variance, and power. The proposed estimator is implemented as a function in R using lavaan and is illustrated using a multilevel mediation example.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.