Xiaozhen Hou , Shi Chen , Linhai Wang , Jiancheng Han , Dong Ma
{"title":"基于等效质量源模型的川滇地区时变重力场模型","authors":"Xiaozhen Hou , Shi Chen , Linhai Wang , Jiancheng Han , Dong Ma","doi":"10.1016/j.geog.2023.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system. Compared to the satellite gravity measurement, the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface. However, the suitable and unified method for gravity model estimation is a key problem for further applications. In this study, we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region (99–104°E, 23–29°N) in the four epochs from 2015 to 2017. Compared to the experimental results based on Slepian or spherical harmonics frequency domain method, this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data, by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal. The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"14 6","pages":"Pages 566-572"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674984723000472/pdfft?md5=e17d8f4231f35eda7089cc057cfb9a45&pid=1-s2.0-S1674984723000472-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Time-varying gravity field model of Sichuan-Yunnan region based on the equivalent mass source model\",\"authors\":\"Xiaozhen Hou , Shi Chen , Linhai Wang , Jiancheng Han , Dong Ma\",\"doi\":\"10.1016/j.geog.2023.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system. Compared to the satellite gravity measurement, the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface. However, the suitable and unified method for gravity model estimation is a key problem for further applications. In this study, we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region (99–104°E, 23–29°N) in the four epochs from 2015 to 2017. Compared to the experimental results based on Slepian or spherical harmonics frequency domain method, this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data, by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal. The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region.</p></div>\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":\"14 6\",\"pages\":\"Pages 566-572\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674984723000472/pdfft?md5=e17d8f4231f35eda7089cc057cfb9a45&pid=1-s2.0-S1674984723000472-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674984723000472\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984723000472","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Time-varying gravity field model of Sichuan-Yunnan region based on the equivalent mass source model
High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system. Compared to the satellite gravity measurement, the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface. However, the suitable and unified method for gravity model estimation is a key problem for further applications. In this study, we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region (99–104°E, 23–29°N) in the four epochs from 2015 to 2017. Compared to the experimental results based on Slepian or spherical harmonics frequency domain method, this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data, by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal. The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.