用l1正则化多状态模型识别异质性疾病进展中的危险因素

IF 5.9 Q1 Computer Science Journal of Healthcare Informatics Research Pub Date : 2021-01-04 eCollection Date: 2021-03-01 DOI:10.1007/s41666-020-00085-1
Xuan Dang, Shuai Huang, Xiaoning Qian
{"title":"用l1正则化多状态模型识别异质性疾病进展中的危险因素","authors":"Xuan Dang, Shuai Huang, Xiaoning Qian","doi":"10.1007/s41666-020-00085-1","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-state model (MSM) is a useful tool to analyze longitudinal data for modeling disease progression at multiple time points. While the regularization approaches to variable selection have been widely used, extending them to MSM remains largely unexplored. In this paper, we have developed the L1-regularized multi-state model (L1MSTATE) framework that enables parameter estimation and variable selection simultaneously. The regularized optimization problem was solved by deriving a one-step coordinate descent algorithm with great computational efficiency. The L1MSTATE approach was evaluated using extensive simulation studies, and it showed that L1MSTATE outperformed existing regularized multi-state models in terms of the accurate identification of risk factors. It also outperformed the un-regularized multi-state models (MSTATE) in terms of identifying the important risk factors in situations with small sample sizes. The power of L1MSTATE in predicting the transition probabilities comparing with MSTATE was demonstrated using the Europe Blood and Marrow Transplantation (EBMT) dataset. The L1MSTATE was implemented in the open-access R package '<b>L1mstate</b>'.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982743/pdf/","citationCount":"0","resultStr":"{\"title\":\"Risk Factor Identification in Heterogeneous Disease Progression with L1-Regularized Multi-state Models.\",\"authors\":\"Xuan Dang, Shuai Huang, Xiaoning Qian\",\"doi\":\"10.1007/s41666-020-00085-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-state model (MSM) is a useful tool to analyze longitudinal data for modeling disease progression at multiple time points. While the regularization approaches to variable selection have been widely used, extending them to MSM remains largely unexplored. In this paper, we have developed the L1-regularized multi-state model (L1MSTATE) framework that enables parameter estimation and variable selection simultaneously. The regularized optimization problem was solved by deriving a one-step coordinate descent algorithm with great computational efficiency. The L1MSTATE approach was evaluated using extensive simulation studies, and it showed that L1MSTATE outperformed existing regularized multi-state models in terms of the accurate identification of risk factors. It also outperformed the un-regularized multi-state models (MSTATE) in terms of identifying the important risk factors in situations with small sample sizes. The power of L1MSTATE in predicting the transition probabilities comparing with MSTATE was demonstrated using the Europe Blood and Marrow Transplantation (EBMT) dataset. The L1MSTATE was implemented in the open-access R package '<b>L1mstate</b>'.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-020-00085-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-020-00085-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

多状态模型(MSM)是一种分析纵向数据的有用工具,用于模拟多个时间点的疾病进展。虽然变量选择的正则化方法已被广泛应用,但将其扩展到 MSM 的研究在很大程度上仍处于空白。在本文中,我们开发了 L1 正则化多状态模型(L1MSTATE)框架,可同时进行参数估计和变量选择。通过推导出具有极高计算效率的一步坐标下降算法,解决了正则化优化问题。通过大量的模拟研究对 L1MSTATE 方法进行了评估,结果表明 L1MSTATE 在准确识别风险因素方面优于现有的正则化多状态模型。在样本量较小的情况下,L1MSTATE 在识别重要风险因素方面也优于非正则化多状态模型(MSTATE)。使用欧洲血液和骨髓移植(EBMT)数据集证明了 L1MSTATE 与 MSTATE 相比在预测过渡概率方面的能力。L1MSTATE 是在开放存取的 R 软件包 "L1mstate "中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Risk Factor Identification in Heterogeneous Disease Progression with L1-Regularized Multi-state Models.

Multi-state model (MSM) is a useful tool to analyze longitudinal data for modeling disease progression at multiple time points. While the regularization approaches to variable selection have been widely used, extending them to MSM remains largely unexplored. In this paper, we have developed the L1-regularized multi-state model (L1MSTATE) framework that enables parameter estimation and variable selection simultaneously. The regularized optimization problem was solved by deriving a one-step coordinate descent algorithm with great computational efficiency. The L1MSTATE approach was evaluated using extensive simulation studies, and it showed that L1MSTATE outperformed existing regularized multi-state models in terms of the accurate identification of risk factors. It also outperformed the un-regularized multi-state models (MSTATE) in terms of identifying the important risk factors in situations with small sample sizes. The power of L1MSTATE in predicting the transition probabilities comparing with MSTATE was demonstrated using the Europe Blood and Marrow Transplantation (EBMT) dataset. The L1MSTATE was implemented in the open-access R package 'L1mstate'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Healthcare Informatics Research
Journal of Healthcare Informatics Research Computer Science-Computer Science Applications
CiteScore
13.60
自引率
1.70%
发文量
12
期刊介绍: Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics.  The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications.   Topics include but are not limited to: ·         healthcare software architecture, framework, design, and engineering;·         electronic health records·         medical data mining·         predictive modeling·         medical information retrieval·         medical natural language processing·         healthcare information systems·         smart health and connected health·         social media analytics·         mobile healthcare·         medical signal processing·         human factors in healthcare·         usability studies in healthcare·         user-interface design for medical devices and healthcare software·         health service delivery·         health games·         security and privacy in healthcare·         medical recommender system·         healthcare workflow management·         disease profiling and personalized treatment·         visualization of medical data·         intelligent medical devices and sensors·         RFID solutions for healthcare·         healthcare decision analytics and support systems·         epidemiological surveillance systems and intervention modeling·         consumer and clinician health information needs, seeking, sharing, and use·         semantic Web, linked data, and ontology·         collaboration technologies for healthcare·         assistive and adaptive ubiquitous computing technologies·         statistics and quality of medical data·         healthcare delivery in developing countries·         health systems modeling and simulation·         computer-aided diagnosis
期刊最新文献
Extracting Pulmonary Nodules and Nodule Characteristics from Radiology Reports of Lung Cancer Screening Patients Using Transformer Models Clinical Information Retrieval: A Literature Review Supporting Fair and Efficient Emergency Medical Services in a Large Heterogeneous Region Validation of Electrocardiogram Based Photoplethysmogram Generated Using U-Net Based Generative Adversarial Networks Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1