{"title":"考虑热致影响的主轴单元角接触球轴承预紧力的测定采用嵌入式光纤Bragg门控传感器","authors":"Yanfang Dong, Feifan Chen, M. Qiu","doi":"10.1177/15501329221082430","DOIUrl":null,"url":null,"abstract":"As the most important segment of the spindle unit angular contact ball bearing, the preload significantly influences the bearing characteristics. Thus, the thermal-induced preload derived from the thermal expansion of spindle unit components also affects the increase in bearing temperature, stiffness, fatigue life, and ball skidding significantly. However, such preload is hard to monitor and analyze. Thus, in this article, the authors presented a fiber Bragg gating sensor-based structure for the identification of thermal-induced bearing preload. In addition, a bearing total preload control mechanism was designed with an emphasis on its thermal component. Based on the comparison of the shaft and the outer ring deformation temperature increases measured by embedded fiber Bragg gating sensors, the reasonable bearing preload range was achieved based on Hirano’s theory. Finally, the conclusions provide a reference for improving the performance of angular contact ball bearings and reducing the spindle vibration.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal-induced influences considered spindle unit angular contact ball bearing preload determination using embedded fiber Bragg gating sensors\",\"authors\":\"Yanfang Dong, Feifan Chen, M. Qiu\",\"doi\":\"10.1177/15501329221082430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the most important segment of the spindle unit angular contact ball bearing, the preload significantly influences the bearing characteristics. Thus, the thermal-induced preload derived from the thermal expansion of spindle unit components also affects the increase in bearing temperature, stiffness, fatigue life, and ball skidding significantly. However, such preload is hard to monitor and analyze. Thus, in this article, the authors presented a fiber Bragg gating sensor-based structure for the identification of thermal-induced bearing preload. In addition, a bearing total preload control mechanism was designed with an emphasis on its thermal component. Based on the comparison of the shaft and the outer ring deformation temperature increases measured by embedded fiber Bragg gating sensors, the reasonable bearing preload range was achieved based on Hirano’s theory. Finally, the conclusions provide a reference for improving the performance of angular contact ball bearings and reducing the spindle vibration.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221082430\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221082430","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Thermal-induced influences considered spindle unit angular contact ball bearing preload determination using embedded fiber Bragg gating sensors
As the most important segment of the spindle unit angular contact ball bearing, the preload significantly influences the bearing characteristics. Thus, the thermal-induced preload derived from the thermal expansion of spindle unit components also affects the increase in bearing temperature, stiffness, fatigue life, and ball skidding significantly. However, such preload is hard to monitor and analyze. Thus, in this article, the authors presented a fiber Bragg gating sensor-based structure for the identification of thermal-induced bearing preload. In addition, a bearing total preload control mechanism was designed with an emphasis on its thermal component. Based on the comparison of the shaft and the outer ring deformation temperature increases measured by embedded fiber Bragg gating sensors, the reasonable bearing preload range was achieved based on Hirano’s theory. Finally, the conclusions provide a reference for improving the performance of angular contact ball bearings and reducing the spindle vibration.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.