用低分子量有机羧酸从煤灰中浸出稀土元素:络合综述和动力学评价

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL International Journal of Chemical Kinetics Pub Date : 2023-06-07 DOI:10.1002/kin.21670
Riya Banerjee, Saswati Chakladar, Shyamal K. Chattopadhyay, Sanchita Chakravarty
{"title":"用低分子量有机羧酸从煤灰中浸出稀土元素:络合综述和动力学评价","authors":"Riya Banerjee,&nbsp;Saswati Chakladar,&nbsp;Shyamal K. Chattopadhyay,&nbsp;Sanchita Chakravarty","doi":"10.1002/kin.21670","DOIUrl":null,"url":null,"abstract":"<p>The study of thermodynamics and kinetics of leaching rare earth elements (REEs) is a fundamental aspect in understanding the mechanism behind the leaching process. Leaching of REEs from coal ash with aqueous solution of organocarboxylic acid is a heterogeneous fluid-particle system. In the present study, the leaching mechanisms of these three potential organocarboxylic acids, tartaric acid, lactic acid, and citric acid were examined over a range of temperature (30–90°C) at various leaching durations. The kinetic data thus obtained were found to follow deviation from the conventional shrinking core model (SCM). A mixed mechanism model was deduced to be the optimum fit to the data with high precision (R<sup>2</sup> &gt; 0.95) and desired graphical linearity with closer interception to the origin. Aluminosilicate matrix remained unaltered after acid treatment which is the unchanged core concluded as from the kinetic mechanism. Morphological analysis using Scanning Electron Microscope (SEM) and particle size determinations were suggestive of significant reduction in grain size post leaching with organocarboxylic acids, tartaric acid being the most effective of all.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"55 10","pages":"606-618"},"PeriodicalIF":1.5000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaching of rare earth elements from coal ash using low molecular weight organocarboxylic acids: Complexation overview and kinetic evaluation\",\"authors\":\"Riya Banerjee,&nbsp;Saswati Chakladar,&nbsp;Shyamal K. Chattopadhyay,&nbsp;Sanchita Chakravarty\",\"doi\":\"10.1002/kin.21670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of thermodynamics and kinetics of leaching rare earth elements (REEs) is a fundamental aspect in understanding the mechanism behind the leaching process. Leaching of REEs from coal ash with aqueous solution of organocarboxylic acid is a heterogeneous fluid-particle system. In the present study, the leaching mechanisms of these three potential organocarboxylic acids, tartaric acid, lactic acid, and citric acid were examined over a range of temperature (30–90°C) at various leaching durations. The kinetic data thus obtained were found to follow deviation from the conventional shrinking core model (SCM). A mixed mechanism model was deduced to be the optimum fit to the data with high precision (R<sup>2</sup> &gt; 0.95) and desired graphical linearity with closer interception to the origin. Aluminosilicate matrix remained unaltered after acid treatment which is the unchanged core concluded as from the kinetic mechanism. Morphological analysis using Scanning Electron Microscope (SEM) and particle size determinations were suggestive of significant reduction in grain size post leaching with organocarboxylic acids, tartaric acid being the most effective of all.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":\"55 10\",\"pages\":\"606-618\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21670\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21670","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

稀土元素浸出的热力学和动力学研究是了解稀土浸出过程背后机理的一个基本方面。有机羧酸水溶液对煤灰中稀土元素的浸出是一个非均相流-颗粒体系。在本研究中,研究了酒石酸、乳酸和柠檬酸这三种潜在的有机羧酸在不同浸出时间和温度范围(30-90℃)下的浸出机制。由此得到的动力学数据与传统的收缩岩心模型(SCM)存在一定的偏差。推导出一种混合机构模型,最适合高精度(R2 >0.95)和期望的图形线性与更接近原点的拦截。酸处理后的硅酸铝基体保持不变,这是由动力学机理得出的不变核心。利用扫描电镜(SEM)进行的形态分析和粒度测定表明,有机羧酸在浸出后显著降低了晶粒尺寸,其中酒石酸是最有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leaching of rare earth elements from coal ash using low molecular weight organocarboxylic acids: Complexation overview and kinetic evaluation

The study of thermodynamics and kinetics of leaching rare earth elements (REEs) is a fundamental aspect in understanding the mechanism behind the leaching process. Leaching of REEs from coal ash with aqueous solution of organocarboxylic acid is a heterogeneous fluid-particle system. In the present study, the leaching mechanisms of these three potential organocarboxylic acids, tartaric acid, lactic acid, and citric acid were examined over a range of temperature (30–90°C) at various leaching durations. The kinetic data thus obtained were found to follow deviation from the conventional shrinking core model (SCM). A mixed mechanism model was deduced to be the optimum fit to the data with high precision (R2 > 0.95) and desired graphical linearity with closer interception to the origin. Aluminosilicate matrix remained unaltered after acid treatment which is the unchanged core concluded as from the kinetic mechanism. Morphological analysis using Scanning Electron Microscope (SEM) and particle size determinations were suggestive of significant reduction in grain size post leaching with organocarboxylic acids, tartaric acid being the most effective of all.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
期刊最新文献
Issue Information Issue Information Force training neural network potential energy surface models Issue Information Folic acid as a green inhibitor for corrosion protection of Q235 carbon steel in 3.5 wt% NaCl solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1