{"title":"噪声相位恢复中基于强度估计器的性能边界","authors":"Meng Huang , Zhiqiang Xu","doi":"10.1016/j.acha.2023.101584","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of noisy phase retrieval is to estimate a signal <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> from <em>m</em> noisy intensity measurements <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are known measurement vectors and <span><math><mi>η</mi><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>⊤</mo></mrow></msup><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> is a noise vector. A commonly used estimator for <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is to minimize the intensity-based loss function, i.e., <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><mo>=</mo><msub><mrow><mtext>argmin</mtext></mrow><mrow><mi>x</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msup><mrow><mo>(</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Although many algorithms for solving the intensity-based estimator have been developed, there are very few results about its estimation performance. In this paper, we focus on the performance of the intensity-based estimator and prove that the error bound satisfies <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>θ</mi><mo>∈</mo><mi>R</mi></mrow></msub><mo></mo><msub><mrow><mo>‖</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><mo>≲</mo><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><msqrt><mrow><msub><mrow><mo>‖</mo><mi>η</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow></msqrt></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mrow><mo>‖</mo><mi>η</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><mo>⋅</mo><msqrt><mrow><mi>m</mi></mrow></msqrt></mrow></mfrac><mo>}</mo></math></span> under the assumption of <span><math><mi>m</mi><mo>≳</mo><mi>d</mi></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>, being complex Gaussian random vectors. We also show that the error bound is rate optimal when <span><math><mi>m</mi><mo>≳</mo><mi>d</mi><mi>log</mi><mo></mo><mi>m</mi></math></span>. In the case where <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is an <em>s</em>-sparse signal, we present a similar result under the assumption of <span><math><mi>m</mi><mo>≳</mo><mi>s</mi><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mi>d</mi><mo>/</mo><mi>s</mi><mo>)</mo></math></span>. To the best of our knowledge, our results provide the first theoretical guarantees for both the intensity-based estimator and its sparse version.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101584"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance bounds of the intensity-based estimators for noisy phase retrieval\",\"authors\":\"Meng Huang , Zhiqiang Xu\",\"doi\":\"10.1016/j.acha.2023.101584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of noisy phase retrieval is to estimate a signal <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> from <em>m</em> noisy intensity measurements <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are known measurement vectors and <span><math><mi>η</mi><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>⊤</mo></mrow></msup><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> is a noise vector. A commonly used estimator for <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is to minimize the intensity-based loss function, i.e., <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><mo>=</mo><msub><mrow><mtext>argmin</mtext></mrow><mrow><mi>x</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msup><mrow><mo>(</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Although many algorithms for solving the intensity-based estimator have been developed, there are very few results about its estimation performance. In this paper, we focus on the performance of the intensity-based estimator and prove that the error bound satisfies <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>θ</mi><mo>∈</mo><mi>R</mi></mrow></msub><mo></mo><msub><mrow><mo>‖</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><mo>≲</mo><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><msqrt><mrow><msub><mrow><mo>‖</mo><mi>η</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow></msqrt></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mrow><mo>‖</mo><mi>η</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><mo>⋅</mo><msqrt><mrow><mi>m</mi></mrow></msqrt></mrow></mfrac><mo>}</mo></math></span> under the assumption of <span><math><mi>m</mi><mo>≳</mo><mi>d</mi></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>, being complex Gaussian random vectors. We also show that the error bound is rate optimal when <span><math><mi>m</mi><mo>≳</mo><mi>d</mi><mi>log</mi><mo></mo><mi>m</mi></math></span>. In the case where <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is an <em>s</em>-sparse signal, we present a similar result under the assumption of <span><math><mi>m</mi><mo>≳</mo><mi>s</mi><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mi>d</mi><mo>/</mo><mi>s</mi><mo>)</mo></math></span>. To the best of our knowledge, our results provide the first theoretical guarantees for both the intensity-based estimator and its sparse version.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"68 \",\"pages\":\"Article 101584\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000714\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000714","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Performance bounds of the intensity-based estimators for noisy phase retrieval
The aim of noisy phase retrieval is to estimate a signal from m noisy intensity measurements , where are known measurement vectors and is a noise vector. A commonly used estimator for is to minimize the intensity-based loss function, i.e., . Although many algorithms for solving the intensity-based estimator have been developed, there are very few results about its estimation performance. In this paper, we focus on the performance of the intensity-based estimator and prove that the error bound satisfies under the assumption of and , being complex Gaussian random vectors. We also show that the error bound is rate optimal when . In the case where is an s-sparse signal, we present a similar result under the assumption of . To the best of our knowledge, our results provide the first theoretical guarantees for both the intensity-based estimator and its sparse version.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.