基于卷积神经网络的印文与拉丁字符识别

Tesalonika Putri, T. Suratno, Ulfa Khaira
{"title":"基于卷积神经网络的印文与拉丁字符识别","authors":"Tesalonika Putri, T. Suratno, Ulfa Khaira","doi":"10.22146/ijccs.70939","DOIUrl":null,"url":null,"abstract":"Incung script is a legacy of the Kerinci tribe located in Kerinci Regency, Jambi Province. On October 17, 2014, the Incung script was designated by the Ministry of Education and Culture as an intangible heritage property owned by Jambi Province. But in reality, the Incung script is almost extinct in society. This study aims to identify the characters of the Incung (Kerinci) script with the output in the form of Latin characters from the Incung script. The classification method used is the Convolutional Neural Network (CNN) method. The dataset used as many as 1400 incung character images divided into 28 classes. In this study, an experiment was conducted to obtain the most optimal model. Showing the results using the CNN method during the training process that the accuracy of the training data reaches 99% and the accuracy of the testing data reaches 91% by using the optimal hyperparameters from the tests that have been done, namely batch size 32, epoch 100, and Adam's optimizer. It evaluates the CNN model using 80 images in words (a combination of several characters) with 4 test scenarios. It shows that the model can recognize image data from scanning printed books, digital writing test data, test data with images containing more than two characters, and check images with different font sizes","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Incung Characters (Kerinci) to Latin Characters Using Convolutional Neural Network\",\"authors\":\"Tesalonika Putri, T. Suratno, Ulfa Khaira\",\"doi\":\"10.22146/ijccs.70939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incung script is a legacy of the Kerinci tribe located in Kerinci Regency, Jambi Province. On October 17, 2014, the Incung script was designated by the Ministry of Education and Culture as an intangible heritage property owned by Jambi Province. But in reality, the Incung script is almost extinct in society. This study aims to identify the characters of the Incung (Kerinci) script with the output in the form of Latin characters from the Incung script. The classification method used is the Convolutional Neural Network (CNN) method. The dataset used as many as 1400 incung character images divided into 28 classes. In this study, an experiment was conducted to obtain the most optimal model. Showing the results using the CNN method during the training process that the accuracy of the training data reaches 99% and the accuracy of the testing data reaches 91% by using the optimal hyperparameters from the tests that have been done, namely batch size 32, epoch 100, and Adam's optimizer. It evaluates the CNN model using 80 images in words (a combination of several characters) with 4 test scenarios. It shows that the model can recognize image data from scanning printed books, digital writing test data, test data with images containing more than two characters, and check images with different font sizes\",\"PeriodicalId\":31625,\"journal\":{\"name\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijccs.70939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.70939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Incung脚本是位于占碑省Kerinci Regency的Kerinci部落的遗产。2014年10月17日,Incung脚本被教育和文化部指定为占碑省的非物质遗产。但事实上,Incung剧本在社会上几乎绝迹。本研究旨在识别Incung(Kerinci)脚本的字符,并从Incung脚本中以拉丁字符的形式输出。所使用的分类方法是卷积神经网络(CNN)方法。该数据集使用了多达1400个incung字符图像,分为28类。在本研究中,进行了一个实验以获得最优化的模型。显示了在训练过程中使用CNN方法的结果,即通过使用来自已经完成的测试的最优超参数,即批量大小32、epoch 100和Adam优化器,训练数据的准确率达到99%,测试数据的准确度达到91%。它使用80个单词图像(几个字符的组合)和4个测试场景来评估CNN模型。结果表明,该模型可以从扫描印刷书籍、数字写作测试数据、图像包含两个以上字符的测试数据以及不同字体大小的图像中识别图像数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Incung Characters (Kerinci) to Latin Characters Using Convolutional Neural Network
Incung script is a legacy of the Kerinci tribe located in Kerinci Regency, Jambi Province. On October 17, 2014, the Incung script was designated by the Ministry of Education and Culture as an intangible heritage property owned by Jambi Province. But in reality, the Incung script is almost extinct in society. This study aims to identify the characters of the Incung (Kerinci) script with the output in the form of Latin characters from the Incung script. The classification method used is the Convolutional Neural Network (CNN) method. The dataset used as many as 1400 incung character images divided into 28 classes. In this study, an experiment was conducted to obtain the most optimal model. Showing the results using the CNN method during the training process that the accuracy of the training data reaches 99% and the accuracy of the testing data reaches 91% by using the optimal hyperparameters from the tests that have been done, namely batch size 32, epoch 100, and Adam's optimizer. It evaluates the CNN model using 80 images in words (a combination of several characters) with 4 test scenarios. It shows that the model can recognize image data from scanning printed books, digital writing test data, test data with images containing more than two characters, and check images with different font sizes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1