有界连续数据的零和一充气项目反应理论模型

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH Journal of Educational and Behavioral Statistics Pub Date : 2022-07-15 DOI:10.3102/10769986221108455
D. Molenaar, M. Curi, Jorge L. Bazán
{"title":"有界连续数据的零和一充气项目反应理论模型","authors":"D. Molenaar, M. Curi, Jorge L. Bazán","doi":"10.3102/10769986221108455","DOIUrl":null,"url":null,"abstract":"Bounded continuous data are encountered in many applications of item response theory, including the measurement of mood, personality, and response times and in the analyses of summed item scores. Although different item response theory models exist to analyze such bounded continuous data, most models assume the data to be in an open interval and cannot accommodate data in a closed interval. As a result, ad hoc transformations are needed to prevent scores on the bounds of the observed variables. To motivate the present study, we demonstrate in real and simulated data that this practice of fitting open interval models to closed interval data can majorly affect parameter estimates even in cases with only 5% of the responses on one of the bounds of the observed variables. To address this problem, we propose a zero and one inflated item response theory modeling framework for bounded continuous responses in the closed interval. We illustrate how four existing models for bounded responses from the literature can be accommodated in the framework. The resulting zero and one inflated item response theory models are studied in a simulation study and a real data application to investigate parameter recovery, model fit, and the consequences of fitting the incorrect distribution to the data. We find that neglecting the bounded nature of the data biases parameters and that misspecification of the exact distribution may affect the results depending on the data generating model.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"47 1","pages":"693 - 735"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zero and One Inflated Item Response Theory Models for Bounded Continuous Data\",\"authors\":\"D. Molenaar, M. Curi, Jorge L. Bazán\",\"doi\":\"10.3102/10769986221108455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bounded continuous data are encountered in many applications of item response theory, including the measurement of mood, personality, and response times and in the analyses of summed item scores. Although different item response theory models exist to analyze such bounded continuous data, most models assume the data to be in an open interval and cannot accommodate data in a closed interval. As a result, ad hoc transformations are needed to prevent scores on the bounds of the observed variables. To motivate the present study, we demonstrate in real and simulated data that this practice of fitting open interval models to closed interval data can majorly affect parameter estimates even in cases with only 5% of the responses on one of the bounds of the observed variables. To address this problem, we propose a zero and one inflated item response theory modeling framework for bounded continuous responses in the closed interval. We illustrate how four existing models for bounded responses from the literature can be accommodated in the framework. The resulting zero and one inflated item response theory models are studied in a simulation study and a real data application to investigate parameter recovery, model fit, and the consequences of fitting the incorrect distribution to the data. We find that neglecting the bounded nature of the data biases parameters and that misspecification of the exact distribution may affect the results depending on the data generating model.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"47 1\",\"pages\":\"693 - 735\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986221108455\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986221108455","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 3

摘要

在项目反应理论的许多应用中都会遇到有界连续数据,包括情绪、个性和反应时间的测量以及项目总得分的分析。虽然存在不同的项目反应理论模型来分析这种有界连续数据,但大多数模型都假设数据处于开放区间,无法容纳封闭区间的数据。因此,需要特别的转换来防止在观察变量的边界上得分。为了激励本研究,我们在真实和模拟数据中证明,即使在观测变量的一个边界上只有5%的响应的情况下,将开放区间模型拟合到封闭区间数据的做法也会严重影响参数估计。为了解决这一问题,我们提出了一个零项和一项膨胀项的有界连续响应理论建模框架。我们将说明如何将文献中已有的四种有界响应模型纳入该框架。在模拟研究和实际数据应用中,研究了由此产生的零和一膨胀项目反应理论模型,以研究参数恢复,模型拟合以及拟合数据不正确分布的后果。我们发现,忽略数据偏差参数的有界性质和准确分布的错误说明可能会影响数据生成模型的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zero and One Inflated Item Response Theory Models for Bounded Continuous Data
Bounded continuous data are encountered in many applications of item response theory, including the measurement of mood, personality, and response times and in the analyses of summed item scores. Although different item response theory models exist to analyze such bounded continuous data, most models assume the data to be in an open interval and cannot accommodate data in a closed interval. As a result, ad hoc transformations are needed to prevent scores on the bounds of the observed variables. To motivate the present study, we demonstrate in real and simulated data that this practice of fitting open interval models to closed interval data can majorly affect parameter estimates even in cases with only 5% of the responses on one of the bounds of the observed variables. To address this problem, we propose a zero and one inflated item response theory modeling framework for bounded continuous responses in the closed interval. We illustrate how four existing models for bounded responses from the literature can be accommodated in the framework. The resulting zero and one inflated item response theory models are studied in a simulation study and a real data application to investigate parameter recovery, model fit, and the consequences of fitting the incorrect distribution to the data. We find that neglecting the bounded nature of the data biases parameters and that misspecification of the exact distribution may affect the results depending on the data generating model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
期刊最新文献
Improving Balance in Educational Measurement: A Legacy of E. F. Lindquist A Simple Technique Assessing Ordinal and Disordinal Interaction Effects A Comparison of Latent Semantic Analysis and Latent Dirichlet Allocation in Educational Measurement Sample Size Calculation and Optimal Design for Multivariate Regression-Based Norming Corrigendum to Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1