{"title":"有界连续数据的零和一充气项目反应理论模型","authors":"D. Molenaar, M. Curi, Jorge L. Bazán","doi":"10.3102/10769986221108455","DOIUrl":null,"url":null,"abstract":"Bounded continuous data are encountered in many applications of item response theory, including the measurement of mood, personality, and response times and in the analyses of summed item scores. Although different item response theory models exist to analyze such bounded continuous data, most models assume the data to be in an open interval and cannot accommodate data in a closed interval. As a result, ad hoc transformations are needed to prevent scores on the bounds of the observed variables. To motivate the present study, we demonstrate in real and simulated data that this practice of fitting open interval models to closed interval data can majorly affect parameter estimates even in cases with only 5% of the responses on one of the bounds of the observed variables. To address this problem, we propose a zero and one inflated item response theory modeling framework for bounded continuous responses in the closed interval. We illustrate how four existing models for bounded responses from the literature can be accommodated in the framework. The resulting zero and one inflated item response theory models are studied in a simulation study and a real data application to investigate parameter recovery, model fit, and the consequences of fitting the incorrect distribution to the data. We find that neglecting the bounded nature of the data biases parameters and that misspecification of the exact distribution may affect the results depending on the data generating model.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"47 1","pages":"693 - 735"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zero and One Inflated Item Response Theory Models for Bounded Continuous Data\",\"authors\":\"D. Molenaar, M. Curi, Jorge L. Bazán\",\"doi\":\"10.3102/10769986221108455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bounded continuous data are encountered in many applications of item response theory, including the measurement of mood, personality, and response times and in the analyses of summed item scores. Although different item response theory models exist to analyze such bounded continuous data, most models assume the data to be in an open interval and cannot accommodate data in a closed interval. As a result, ad hoc transformations are needed to prevent scores on the bounds of the observed variables. To motivate the present study, we demonstrate in real and simulated data that this practice of fitting open interval models to closed interval data can majorly affect parameter estimates even in cases with only 5% of the responses on one of the bounds of the observed variables. To address this problem, we propose a zero and one inflated item response theory modeling framework for bounded continuous responses in the closed interval. We illustrate how four existing models for bounded responses from the literature can be accommodated in the framework. The resulting zero and one inflated item response theory models are studied in a simulation study and a real data application to investigate parameter recovery, model fit, and the consequences of fitting the incorrect distribution to the data. We find that neglecting the bounded nature of the data biases parameters and that misspecification of the exact distribution may affect the results depending on the data generating model.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"47 1\",\"pages\":\"693 - 735\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986221108455\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986221108455","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Zero and One Inflated Item Response Theory Models for Bounded Continuous Data
Bounded continuous data are encountered in many applications of item response theory, including the measurement of mood, personality, and response times and in the analyses of summed item scores. Although different item response theory models exist to analyze such bounded continuous data, most models assume the data to be in an open interval and cannot accommodate data in a closed interval. As a result, ad hoc transformations are needed to prevent scores on the bounds of the observed variables. To motivate the present study, we demonstrate in real and simulated data that this practice of fitting open interval models to closed interval data can majorly affect parameter estimates even in cases with only 5% of the responses on one of the bounds of the observed variables. To address this problem, we propose a zero and one inflated item response theory modeling framework for bounded continuous responses in the closed interval. We illustrate how four existing models for bounded responses from the literature can be accommodated in the framework. The resulting zero and one inflated item response theory models are studied in a simulation study and a real data application to investigate parameter recovery, model fit, and the consequences of fitting the incorrect distribution to the data. We find that neglecting the bounded nature of the data biases parameters and that misspecification of the exact distribution may affect the results depending on the data generating model.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.