一种估计两条水道中所有交叉角的碰撞候选数量的方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-02-21 DOI:10.1017/S0373463321000898
F. Kaneko
{"title":"一种估计两条水道中所有交叉角的碰撞候选数量的方法","authors":"F. Kaneko","doi":"10.1017/S0373463321000898","DOIUrl":null,"url":null,"abstract":"Abstract Estimating the collision frequency of ships (F) is important for assessing collision risk on waterways. To date, F has been estimated as the product of the number of collision candidates $({N_{a }})$ and the causation probability $({P_c})$: $F = {N_{a}} \\cdot {P_c}$, where ${N_{a }}$ represents the number of collisions that occur when related ships continue on course with no intervention, and ${P_c}$ is the probability that collision avoidance fails. Fujii developed a general method and Pedersen formulated it to estimate ${N_{a }}$ in an intersectional area. Their method is generally called ‘the geometric method’ because collision candidates are estimated only from the geometric relationship between two ships. The method has been used in many projects to estimate F in waterways; however, its use should be limited to intersection angles ranging from 10° to 170°. This paper presents a method, statistically verified by computer simulation, that can be used at all intersection angles to overcome this limitation. Moreover, it demonstrates strong agreement with Pedersen's method at intersection angles of 10° to 170°.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for estimating the number of collision candidates in two waterways – for all intersection angles\",\"authors\":\"F. Kaneko\",\"doi\":\"10.1017/S0373463321000898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Estimating the collision frequency of ships (F) is important for assessing collision risk on waterways. To date, F has been estimated as the product of the number of collision candidates $({N_{a }})$ and the causation probability $({P_c})$: $F = {N_{a}} \\\\cdot {P_c}$, where ${N_{a }}$ represents the number of collisions that occur when related ships continue on course with no intervention, and ${P_c}$ is the probability that collision avoidance fails. Fujii developed a general method and Pedersen formulated it to estimate ${N_{a }}$ in an intersectional area. Their method is generally called ‘the geometric method’ because collision candidates are estimated only from the geometric relationship between two ships. The method has been used in many projects to estimate F in waterways; however, its use should be limited to intersection angles ranging from 10° to 170°. This paper presents a method, statistically verified by computer simulation, that can be used at all intersection angles to overcome this limitation. Moreover, it demonstrates strong agreement with Pedersen's method at intersection angles of 10° to 170°.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463321000898\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463321000898","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要船舶碰撞频率(F)的估计是航道碰撞风险评估的重要内容。迄今为止,F已被估计为碰撞候选数$({N_{a}})$与因果概率$({P_c})$的乘积:$F = {N_{a}} \cdot {P_c}$,其中${N_{a}}$表示相关船舶在没有干预的情况下继续航行时发生的碰撞次数,${P_c}$表示避碰失败的概率。Fujii开发了一种通用方法,Pedersen将其表述为在相交区域估计${N_{a}}$。他们的方法通常被称为“几何方法”,因为只根据两艘船之间的几何关系来估计碰撞候选者。该方法已在许多工程中用于估算水道中的F;但是,其使用应限于10°至170°的交角范围。本文提出了一种方法,并通过计算机仿真进行了统计验证,该方法可用于所有交角,以克服这一限制。在10°~ 170°的交角范围内,该方法与Pedersen方法非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method for estimating the number of collision candidates in two waterways – for all intersection angles
Abstract Estimating the collision frequency of ships (F) is important for assessing collision risk on waterways. To date, F has been estimated as the product of the number of collision candidates $({N_{a }})$ and the causation probability $({P_c})$: $F = {N_{a}} \cdot {P_c}$, where ${N_{a }}$ represents the number of collisions that occur when related ships continue on course with no intervention, and ${P_c}$ is the probability that collision avoidance fails. Fujii developed a general method and Pedersen formulated it to estimate ${N_{a }}$ in an intersectional area. Their method is generally called ‘the geometric method’ because collision candidates are estimated only from the geometric relationship between two ships. The method has been used in many projects to estimate F in waterways; however, its use should be limited to intersection angles ranging from 10° to 170°. This paper presents a method, statistically verified by computer simulation, that can be used at all intersection angles to overcome this limitation. Moreover, it demonstrates strong agreement with Pedersen's method at intersection angles of 10° to 170°.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome. The prevention of medication errors in the home care setting: a scoping review. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1