Timo Tarvainen, Marja Lehtonen, Yann Lahaye, Jaana Jarva
{"title":"芬兰西南部图尔库填充物土壤中铅源追踪分析工作流程","authors":"Timo Tarvainen, Marja Lehtonen, Yann Lahaye, Jaana Jarva","doi":"10.1016/j.apgeochem.2023.105735","DOIUrl":null,"url":null,"abstract":"<div><p>We present an analytical workflow scheme to trace the source of lead and to estimate risks to lead contaminated soil and demonstrate the methods with test sites from the city of Turku. This workflow includes lead concentration, sequential extractions, mineralogical characterization, and isotope composition. Lead concentrations higher than 100 mg/kg were found in 16 out of 219 urban topsoil samples in the city of Turku during soil geochemical baseline mapping. Ten samples were selected for detailed geochemical and mineralogical studies. Most of the elevated Pb concentrations were measured from fill-derived soils. Mineralogical investigations using FE-SEM-EDS demonstrated that Pb exists in various types of particles and compounds in the Turku topsoil samples. Most of the particles appear to be of anthropogenic origin. The Pb isotopic compositions measured on individual Pb-bearing particles using laser ablation MC-ICP-MS in Turku soil rule out their origin from Finnish and Swedish bedrock. Thus, Pb in the fill-derived soils must have been imported from other regions. Based on the combined use of traditional geochemical study and advanced micro-analytical techniques, it was found that Pb in urban fill-derived soils is bound to various carrier phases and has several pollution sources. When Pb-containing urban soil is reused in city constructions, care should be taken to prevent direct contact with the Pb-containing soil and dust generation at such sites.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"156 ","pages":"Article 105735"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical workflow to trace lead sources in fill-derived soils in Turku, Southwest Finland\",\"authors\":\"Timo Tarvainen, Marja Lehtonen, Yann Lahaye, Jaana Jarva\",\"doi\":\"10.1016/j.apgeochem.2023.105735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an analytical workflow scheme to trace the source of lead and to estimate risks to lead contaminated soil and demonstrate the methods with test sites from the city of Turku. This workflow includes lead concentration, sequential extractions, mineralogical characterization, and isotope composition. Lead concentrations higher than 100 mg/kg were found in 16 out of 219 urban topsoil samples in the city of Turku during soil geochemical baseline mapping. Ten samples were selected for detailed geochemical and mineralogical studies. Most of the elevated Pb concentrations were measured from fill-derived soils. Mineralogical investigations using FE-SEM-EDS demonstrated that Pb exists in various types of particles and compounds in the Turku topsoil samples. Most of the particles appear to be of anthropogenic origin. The Pb isotopic compositions measured on individual Pb-bearing particles using laser ablation MC-ICP-MS in Turku soil rule out their origin from Finnish and Swedish bedrock. Thus, Pb in the fill-derived soils must have been imported from other regions. Based on the combined use of traditional geochemical study and advanced micro-analytical techniques, it was found that Pb in urban fill-derived soils is bound to various carrier phases and has several pollution sources. When Pb-containing urban soil is reused in city constructions, care should be taken to prevent direct contact with the Pb-containing soil and dust generation at such sites.</p></div>\",\"PeriodicalId\":8064,\"journal\":{\"name\":\"Applied Geochemistry\",\"volume\":\"156 \",\"pages\":\"Article 105735\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0883292723001804\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292723001804","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Analytical workflow to trace lead sources in fill-derived soils in Turku, Southwest Finland
We present an analytical workflow scheme to trace the source of lead and to estimate risks to lead contaminated soil and demonstrate the methods with test sites from the city of Turku. This workflow includes lead concentration, sequential extractions, mineralogical characterization, and isotope composition. Lead concentrations higher than 100 mg/kg were found in 16 out of 219 urban topsoil samples in the city of Turku during soil geochemical baseline mapping. Ten samples were selected for detailed geochemical and mineralogical studies. Most of the elevated Pb concentrations were measured from fill-derived soils. Mineralogical investigations using FE-SEM-EDS demonstrated that Pb exists in various types of particles and compounds in the Turku topsoil samples. Most of the particles appear to be of anthropogenic origin. The Pb isotopic compositions measured on individual Pb-bearing particles using laser ablation MC-ICP-MS in Turku soil rule out their origin from Finnish and Swedish bedrock. Thus, Pb in the fill-derived soils must have been imported from other regions. Based on the combined use of traditional geochemical study and advanced micro-analytical techniques, it was found that Pb in urban fill-derived soils is bound to various carrier phases and has several pollution sources. When Pb-containing urban soil is reused in city constructions, care should be taken to prevent direct contact with the Pb-containing soil and dust generation at such sites.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.