T300/69层压板边缘低速冲击后残余抗压强度研究

IF 3.5 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal of Structural Integrity Pub Date : 2023-08-21 DOI:10.1108/ijsi-04-2023-0030
Y. Wei, Xuexue Wang, Jianhui Liu, Jianwei Li, Yichen Pan
{"title":"T300/69层压板边缘低速冲击后残余抗压强度研究","authors":"Y. Wei, Xuexue Wang, Jianhui Liu, Jianwei Li, Yichen Pan","doi":"10.1108/ijsi-04-2023-0030","DOIUrl":null,"url":null,"abstract":"PurposeEngineering composite laminates/structures are usually subjected to complex and variable loads, which result in interlayer delamination damage. However, damaged laminate may cause the whole structure to fail before reaching the design level. Therefore, the purpose of this paper is to develop an equivalent model to effectively evaluate compressive residual strength.Design/methodology/approachIn this paper, taking carbon fiber reinforced composite T300/69 specimens as the study object, first, the compressive residual strength under different impact energy is obtained. Then, zero-thickness cohesive elements, Hashin failure criteria and Camanho nonlinear degradation scheme are used to simulate the full-process simulation for compression after edge impact (CAEI). Lastly, based on an improved Whitney–Nuismer criterion, the equation of edge hole stress distribution, characteristic length and compressive residual strength is used to verify the correctness of the equivalent model.FindingsAn equivalent relationship between the compressive residual strength of damaged laminates and laminates with edge hole is established. For T300/69 laminates with a thickness of 2.4 mm, the compressive residual strength after damage under an impact energy of 3 J is equivalent to that when the hole aperture R = 2.25 mm and the hole aperture R = 9.18 mm when impact energy is 6 J. Besides, the relationship under the same size and different thickness is obtained.Originality/valueThe value of this study is to provide a reference for the equivalent behavior of damaged laminates. An equivalent model proposed in this paper will contribute to the research of compressive residual strength and provide a theoretical basis for practical engineering application.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the compressive residual strength after edge low-velocity impact of T300/69 laminates\",\"authors\":\"Y. Wei, Xuexue Wang, Jianhui Liu, Jianwei Li, Yichen Pan\",\"doi\":\"10.1108/ijsi-04-2023-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeEngineering composite laminates/structures are usually subjected to complex and variable loads, which result in interlayer delamination damage. However, damaged laminate may cause the whole structure to fail before reaching the design level. Therefore, the purpose of this paper is to develop an equivalent model to effectively evaluate compressive residual strength.Design/methodology/approachIn this paper, taking carbon fiber reinforced composite T300/69 specimens as the study object, first, the compressive residual strength under different impact energy is obtained. Then, zero-thickness cohesive elements, Hashin failure criteria and Camanho nonlinear degradation scheme are used to simulate the full-process simulation for compression after edge impact (CAEI). Lastly, based on an improved Whitney–Nuismer criterion, the equation of edge hole stress distribution, characteristic length and compressive residual strength is used to verify the correctness of the equivalent model.FindingsAn equivalent relationship between the compressive residual strength of damaged laminates and laminates with edge hole is established. For T300/69 laminates with a thickness of 2.4 mm, the compressive residual strength after damage under an impact energy of 3 J is equivalent to that when the hole aperture R = 2.25 mm and the hole aperture R = 9.18 mm when impact energy is 6 J. Besides, the relationship under the same size and different thickness is obtained.Originality/valueThe value of this study is to provide a reference for the equivalent behavior of damaged laminates. An equivalent model proposed in this paper will contribute to the research of compressive residual strength and provide a theoretical basis for practical engineering application.\",\"PeriodicalId\":45359,\"journal\":{\"name\":\"International Journal of Structural Integrity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijsi-04-2023-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-04-2023-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的工程复合材料层压板/结构通常承受复杂多变的载荷,导致层间脱层损伤。然而,层压板的损坏可能会导致整个结构在达到设计水平之前就失效。因此,本文的目的是建立一个有效评估抗压残余强度的等效模型。设计/方法/方法本文以碳纤维增强复合材料T300/69试样为研究对象,首先获得了不同冲击能量下的抗压残余强度。然后,采用零厚度内聚单元、Hashin失效准则和Camanho非线性退化格式对边缘碰撞压缩(CAEI)的全过程进行模拟。最后,基于改进的Whitney-Nuismer准则,利用边孔应力分布、特征长度和抗压残余强度方程验证了等效模型的正确性。建立了损伤层合板与带边孔层合板抗压残余强度的等效关系。对于厚度为2.4 mm的T300/69层压板,冲击能为3 J时的损伤后残余抗压强度与冲击能为6 J时孔孔径R = 2.25 mm和孔孔径R = 9.18 mm时的损伤后残余抗压强度等效,并得到了相同尺寸和不同厚度下的关系。独创性/价值本研究的价值在于为损伤层合板的等效行为提供参考。本文提出的等效模型有助于研究抗压残余强度,为实际工程应用提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the compressive residual strength after edge low-velocity impact of T300/69 laminates
PurposeEngineering composite laminates/structures are usually subjected to complex and variable loads, which result in interlayer delamination damage. However, damaged laminate may cause the whole structure to fail before reaching the design level. Therefore, the purpose of this paper is to develop an equivalent model to effectively evaluate compressive residual strength.Design/methodology/approachIn this paper, taking carbon fiber reinforced composite T300/69 specimens as the study object, first, the compressive residual strength under different impact energy is obtained. Then, zero-thickness cohesive elements, Hashin failure criteria and Camanho nonlinear degradation scheme are used to simulate the full-process simulation for compression after edge impact (CAEI). Lastly, based on an improved Whitney–Nuismer criterion, the equation of edge hole stress distribution, characteristic length and compressive residual strength is used to verify the correctness of the equivalent model.FindingsAn equivalent relationship between the compressive residual strength of damaged laminates and laminates with edge hole is established. For T300/69 laminates with a thickness of 2.4 mm, the compressive residual strength after damage under an impact energy of 3 J is equivalent to that when the hole aperture R = 2.25 mm and the hole aperture R = 9.18 mm when impact energy is 6 J. Besides, the relationship under the same size and different thickness is obtained.Originality/valueThe value of this study is to provide a reference for the equivalent behavior of damaged laminates. An equivalent model proposed in this paper will contribute to the research of compressive residual strength and provide a theoretical basis for practical engineering application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Structural Integrity
International Journal of Structural Integrity ENGINEERING, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
14.80%
发文量
42
期刊最新文献
Research on fatigue curve fitting methods based on the notch stress approach Evaluation of the strain response of FRP partially confined concrete using FEM and DIC testing New investigation of delamination using the VCCT method to predict the damage in bonded composite repair plates subjected to tensile load Exploring the mechanical response of functionally graded hollow disks: insights from rotation, gravity and variable heat generation Seismic reduction principle and response analysis of variable damping viscous damper system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1