{"title":"基于布谷鸟搜索和入侵杂草优化的极端学习机神经网络优化","authors":"Nilesh Rathod, Sunil Wankhade","doi":"10.1016/j.neuri.2022.100075","DOIUrl":null,"url":null,"abstract":"<div><p>Extreme Learning Machine (ELM) is widely known to train feed forward network with high speed and good generalization performance. The only problem associated with ELM is required higher number of hidden neurons due to random selection. In this paper we proposed a new model Cuckoo Search with Invasive weed optimization based Extreme Learning Machine (CSIWO-ELM) to optimize input weight and hidden neurons. This model provides the optimize input to the feedforward network to improve the ELM. The developed model is experimented on three medical datasets to see the data classification. Also, the developed model is compared with different optimize algorithm. The experimental result proves the excellent working of CSIWO-ELM model for classification problem.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"2 3","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772528622000371/pdfft?md5=ddbc73d02fa780c260d388af722bac0a&pid=1-s2.0-S2772528622000371-main.pdf","citationCount":"7","resultStr":"{\"title\":\"Optimizing neural network based on cuckoo search and invasive weed optimization using extreme learning machine approach\",\"authors\":\"Nilesh Rathod, Sunil Wankhade\",\"doi\":\"10.1016/j.neuri.2022.100075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extreme Learning Machine (ELM) is widely known to train feed forward network with high speed and good generalization performance. The only problem associated with ELM is required higher number of hidden neurons due to random selection. In this paper we proposed a new model Cuckoo Search with Invasive weed optimization based Extreme Learning Machine (CSIWO-ELM) to optimize input weight and hidden neurons. This model provides the optimize input to the feedforward network to improve the ELM. The developed model is experimented on three medical datasets to see the data classification. Also, the developed model is compared with different optimize algorithm. The experimental result proves the excellent working of CSIWO-ELM model for classification problem.</p></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"2 3\",\"pages\":\"Article 100075\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772528622000371/pdfft?md5=ddbc73d02fa780c260d388af722bac0a&pid=1-s2.0-S2772528622000371-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528622000371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528622000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
极限学习机(Extreme Learning Machine, ELM)以训练前馈网络的速度快、泛化性能好而著称。与ELM相关的唯一问题是由于随机选择需要更多的隐藏神经元。本文提出了一种基于入侵杂草优化的杜鹃搜索(Cuckoo Search with Invasive weed optimization based Extreme Learning Machine, CSIWO-ELM)模型来优化输入权值和隐藏神经元。该模型为前馈网络提供最优输入,以提高ELM。在三个医学数据集上进行了实验,验证了模型的分类效果。并与不同的优化算法进行了比较。实验结果证明了CSIWO-ELM模型在分类问题上的良好工作性能。
Optimizing neural network based on cuckoo search and invasive weed optimization using extreme learning machine approach
Extreme Learning Machine (ELM) is widely known to train feed forward network with high speed and good generalization performance. The only problem associated with ELM is required higher number of hidden neurons due to random selection. In this paper we proposed a new model Cuckoo Search with Invasive weed optimization based Extreme Learning Machine (CSIWO-ELM) to optimize input weight and hidden neurons. This model provides the optimize input to the feedforward network to improve the ELM. The developed model is experimented on three medical datasets to see the data classification. Also, the developed model is compared with different optimize algorithm. The experimental result proves the excellent working of CSIWO-ELM model for classification problem.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology