基于布谷鸟搜索和入侵杂草优化的极端学习机神经网络优化

Nilesh Rathod, Sunil Wankhade
{"title":"基于布谷鸟搜索和入侵杂草优化的极端学习机神经网络优化","authors":"Nilesh Rathod,&nbsp;Sunil Wankhade","doi":"10.1016/j.neuri.2022.100075","DOIUrl":null,"url":null,"abstract":"<div><p>Extreme Learning Machine (ELM) is widely known to train feed forward network with high speed and good generalization performance. The only problem associated with ELM is required higher number of hidden neurons due to random selection. In this paper we proposed a new model Cuckoo Search with Invasive weed optimization based Extreme Learning Machine (CSIWO-ELM) to optimize input weight and hidden neurons. This model provides the optimize input to the feedforward network to improve the ELM. The developed model is experimented on three medical datasets to see the data classification. Also, the developed model is compared with different optimize algorithm. The experimental result proves the excellent working of CSIWO-ELM model for classification problem.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"2 3","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772528622000371/pdfft?md5=ddbc73d02fa780c260d388af722bac0a&pid=1-s2.0-S2772528622000371-main.pdf","citationCount":"7","resultStr":"{\"title\":\"Optimizing neural network based on cuckoo search and invasive weed optimization using extreme learning machine approach\",\"authors\":\"Nilesh Rathod,&nbsp;Sunil Wankhade\",\"doi\":\"10.1016/j.neuri.2022.100075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extreme Learning Machine (ELM) is widely known to train feed forward network with high speed and good generalization performance. The only problem associated with ELM is required higher number of hidden neurons due to random selection. In this paper we proposed a new model Cuckoo Search with Invasive weed optimization based Extreme Learning Machine (CSIWO-ELM) to optimize input weight and hidden neurons. This model provides the optimize input to the feedforward network to improve the ELM. The developed model is experimented on three medical datasets to see the data classification. Also, the developed model is compared with different optimize algorithm. The experimental result proves the excellent working of CSIWO-ELM model for classification problem.</p></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"2 3\",\"pages\":\"Article 100075\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772528622000371/pdfft?md5=ddbc73d02fa780c260d388af722bac0a&pid=1-s2.0-S2772528622000371-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528622000371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528622000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

极限学习机(Extreme Learning Machine, ELM)以训练前馈网络的速度快、泛化性能好而著称。与ELM相关的唯一问题是由于随机选择需要更多的隐藏神经元。本文提出了一种基于入侵杂草优化的杜鹃搜索(Cuckoo Search with Invasive weed optimization based Extreme Learning Machine, CSIWO-ELM)模型来优化输入权值和隐藏神经元。该模型为前馈网络提供最优输入,以提高ELM。在三个医学数据集上进行了实验,验证了模型的分类效果。并与不同的优化算法进行了比较。实验结果证明了CSIWO-ELM模型在分类问题上的良好工作性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing neural network based on cuckoo search and invasive weed optimization using extreme learning machine approach

Extreme Learning Machine (ELM) is widely known to train feed forward network with high speed and good generalization performance. The only problem associated with ELM is required higher number of hidden neurons due to random selection. In this paper we proposed a new model Cuckoo Search with Invasive weed optimization based Extreme Learning Machine (CSIWO-ELM) to optimize input weight and hidden neurons. This model provides the optimize input to the feedforward network to improve the ELM. The developed model is experimented on three medical datasets to see the data classification. Also, the developed model is compared with different optimize algorithm. The experimental result proves the excellent working of CSIWO-ELM model for classification problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Editorial Board Contents Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in neurodegenerative diseases Topic modeling of neuropsychiatric diseases related to gut microbiota and gut brain axis using artificial intelligence based BERTopic model on PubMed abstracts Brain network analysis in Parkinson's disease patients based on graph theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1