I. Papantonis, Leonidas S. Rompolis, Elias Tzavalis, Orestis Agapitos
{"title":"增强已实现GARCH:符号跳跃、衰减偏差和长记忆效应的作用","authors":"I. Papantonis, Leonidas S. Rompolis, Elias Tzavalis, Orestis Agapitos","doi":"10.1515/snde-2020-0131","DOIUrl":null,"url":null,"abstract":"Abstract This paper extends the Realized-GARCH framework, by allowing the conditional variance equation to incorporate exogenous variables related to intra-day realized measures. The choice of these measures is motivated by the so-called heterogeneous auto-regressive (HAR) class of models. Our augmented model is found to outperform both the Realized-GARCH and the various HAR models in terms of in-sample fitting and out-of-sample forecasting accuracy. The new model specification is examined under alternative parametric density assumptions for the return innovations. Non-normality seems to be very important for filtering the return innovations to which variance responds and helps significantly upon the prediction performance of the suggested model.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"27 1","pages":"171 - 198"},"PeriodicalIF":0.7000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects\",\"authors\":\"I. Papantonis, Leonidas S. Rompolis, Elias Tzavalis, Orestis Agapitos\",\"doi\":\"10.1515/snde-2020-0131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper extends the Realized-GARCH framework, by allowing the conditional variance equation to incorporate exogenous variables related to intra-day realized measures. The choice of these measures is motivated by the so-called heterogeneous auto-regressive (HAR) class of models. Our augmented model is found to outperform both the Realized-GARCH and the various HAR models in terms of in-sample fitting and out-of-sample forecasting accuracy. The new model specification is examined under alternative parametric density assumptions for the return innovations. Non-normality seems to be very important for filtering the return innovations to which variance responds and helps significantly upon the prediction performance of the suggested model.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"27 1\",\"pages\":\"171 - 198\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2020-0131\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2020-0131","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects
Abstract This paper extends the Realized-GARCH framework, by allowing the conditional variance equation to incorporate exogenous variables related to intra-day realized measures. The choice of these measures is motivated by the so-called heterogeneous auto-regressive (HAR) class of models. Our augmented model is found to outperform both the Realized-GARCH and the various HAR models in terms of in-sample fitting and out-of-sample forecasting accuracy. The new model specification is examined under alternative parametric density assumptions for the return innovations. Non-normality seems to be very important for filtering the return innovations to which variance responds and helps significantly upon the prediction performance of the suggested model.
期刊介绍:
Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.