维护策略和能源效率:综述

IF 1.8 Q3 ENGINEERING, INDUSTRIAL Journal of Quality in Maintenance Engineering Pub Date : 2023-02-06 DOI:10.1108/jqme-06-2021-0046
N. Firdaus, H. Ab-Samat, B. T. Prasetyo
{"title":"维护策略和能源效率:综述","authors":"N. Firdaus, H. Ab-Samat, B. T. Prasetyo","doi":"10.1108/jqme-06-2021-0046","DOIUrl":null,"url":null,"abstract":"PurposeThis paper reviews the literature on maintenance strategies for energy efficiency as a potential maintenance approach. The purpose of this paper is to identify the main concept and common principle for each maintenance strategy for energy efficiency.Design/methodology/approachA literature review has been carried out on maintenance and energy efficiency. The paper systematically classified the literature into three maintenance strategies (e.g. inspection-based maintenance [IBM], time-based maintenance [TBM] and condition-based maintenance [CBM]). The concept and principle of each maintenance strategy are identified, compared and discussed.FindingsEach maintenance strategy's main concept and principle are identified based on the following criteria: data required and collection, data analysis/modeling and decision-making. IBM relies on human senses and common senses to detect energy faults. Any detected energy losses are quantified to energy cost. A payback period analysis is commonly used to justify corrective actions. On the other hand, CBM monitors relevant parameters that indicate energy performance indicators (EnPIs). Data analysis or deterioration modeling is needed to identify energy degradation. For the diagnostics approach, the energy degradation is compared with the threshold to justify corrective maintenance. The prognostics approach estimates when energy degradation reaches its threshold; therefore, proper maintenance tasks can be planned. On the other hand, TBM uses historical data from energy monitoring. Data analysis or deterioration modeling is required to identify degradation. Further analysis is performed to find the optimal time to perform a maintenance task. The comparison between housekeeping, IBM and CBM is also discussed and presented.Practical implicationsThe literature on the classification of maintenance strategies for energy efficiency has been limited. On the other hand, the ISO 50001 energy management systems standard shows the importance of maintenance for energy efficiency (MFEE). Therefore, to bridge the gap between research and industry, the proposed concept and principle of maintenance strategies will be helpful for practitioners to apply maintenance strategies as energy conservation measures in implementing ISO 50001 standard.Originality/valueThe novelty of this paper is in-depth discussion on the concept and principle of each maintenance strategy (e.g. housekeeping or IBM, TBM and CBM) for energy efficiency. The relevant literature for each maintenance strategy was also summarized. In addition, basic rules for maintenance strategy selection are also proposed.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maintenance strategies and energy efficiency: a review\",\"authors\":\"N. Firdaus, H. Ab-Samat, B. T. Prasetyo\",\"doi\":\"10.1108/jqme-06-2021-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper reviews the literature on maintenance strategies for energy efficiency as a potential maintenance approach. The purpose of this paper is to identify the main concept and common principle for each maintenance strategy for energy efficiency.Design/methodology/approachA literature review has been carried out on maintenance and energy efficiency. The paper systematically classified the literature into three maintenance strategies (e.g. inspection-based maintenance [IBM], time-based maintenance [TBM] and condition-based maintenance [CBM]). The concept and principle of each maintenance strategy are identified, compared and discussed.FindingsEach maintenance strategy's main concept and principle are identified based on the following criteria: data required and collection, data analysis/modeling and decision-making. IBM relies on human senses and common senses to detect energy faults. Any detected energy losses are quantified to energy cost. A payback period analysis is commonly used to justify corrective actions. On the other hand, CBM monitors relevant parameters that indicate energy performance indicators (EnPIs). Data analysis or deterioration modeling is needed to identify energy degradation. For the diagnostics approach, the energy degradation is compared with the threshold to justify corrective maintenance. The prognostics approach estimates when energy degradation reaches its threshold; therefore, proper maintenance tasks can be planned. On the other hand, TBM uses historical data from energy monitoring. Data analysis or deterioration modeling is required to identify degradation. Further analysis is performed to find the optimal time to perform a maintenance task. The comparison between housekeeping, IBM and CBM is also discussed and presented.Practical implicationsThe literature on the classification of maintenance strategies for energy efficiency has been limited. On the other hand, the ISO 50001 energy management systems standard shows the importance of maintenance for energy efficiency (MFEE). Therefore, to bridge the gap between research and industry, the proposed concept and principle of maintenance strategies will be helpful for practitioners to apply maintenance strategies as energy conservation measures in implementing ISO 50001 standard.Originality/valueThe novelty of this paper is in-depth discussion on the concept and principle of each maintenance strategy (e.g. housekeeping or IBM, TBM and CBM) for energy efficiency. The relevant literature for each maintenance strategy was also summarized. In addition, basic rules for maintenance strategy selection are also proposed.\",\"PeriodicalId\":16938,\"journal\":{\"name\":\"Journal of Quality in Maintenance Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality in Maintenance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jqme-06-2021-0046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-06-2021-0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

目的本文综述了能源效率维护策略作为一种潜在的维护方法的文献。本文的目的是确定每个能源效率维护策略的主要概念和共同原则。设计/方法/方法对维护和能源效率进行了文献综述。本文系统地将文献分为三种维护策略(如基于检查的维护[IBM]、基于时间的维护[TBM]和基于状态的维护[CBM])。对各种维护策略的概念和原理进行了识别、比较和讨论。每个维护策略的主要概念和原则是基于以下标准确定的:所需的数据和收集,数据分析/建模和决策。IBM依靠人的感官和常识来检测能源故障。任何检测到的能量损失都被量化为能量成本。投资回收期分析通常用于证明纠正措施的合理性。另一方面,CBM监测指示能源绩效指标(enpi)的相关参数。需要数据分析或退化建模来识别能量退化。对于诊断方法,将能量退化与阈值进行比较,以证明纠正维护的合理性。预测方法估计能量退化何时达到阈值;因此,可以合理规划维护任务。另一方面,隧道掘进机使用能量监测的历史数据。识别退化需要数据分析或退化建模。执行进一步的分析以找到执行维护任务的最佳时间。本文还讨论了内务管理、IBM和CBM之间的比较。实际意义关于能效维护策略分类的文献是有限的。另一方面,ISO 50001能源管理体系标准显示了维护能源效率(MFEE)的重要性。因此,本文提出的维修策略的概念和原则,将有助于业界在实施ISO 50001标准时,将维修策略作为节能措施加以应用。本文的新颖之处在于深入讨论了能源效率的每种维护策略(例如内务管理或IBM, TBM和CBM)的概念和原则。并对每种维护策略的相关文献进行了总结。此外,还提出了维护策略选择的基本原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maintenance strategies and energy efficiency: a review
PurposeThis paper reviews the literature on maintenance strategies for energy efficiency as a potential maintenance approach. The purpose of this paper is to identify the main concept and common principle for each maintenance strategy for energy efficiency.Design/methodology/approachA literature review has been carried out on maintenance and energy efficiency. The paper systematically classified the literature into three maintenance strategies (e.g. inspection-based maintenance [IBM], time-based maintenance [TBM] and condition-based maintenance [CBM]). The concept and principle of each maintenance strategy are identified, compared and discussed.FindingsEach maintenance strategy's main concept and principle are identified based on the following criteria: data required and collection, data analysis/modeling and decision-making. IBM relies on human senses and common senses to detect energy faults. Any detected energy losses are quantified to energy cost. A payback period analysis is commonly used to justify corrective actions. On the other hand, CBM monitors relevant parameters that indicate energy performance indicators (EnPIs). Data analysis or deterioration modeling is needed to identify energy degradation. For the diagnostics approach, the energy degradation is compared with the threshold to justify corrective maintenance. The prognostics approach estimates when energy degradation reaches its threshold; therefore, proper maintenance tasks can be planned. On the other hand, TBM uses historical data from energy monitoring. Data analysis or deterioration modeling is required to identify degradation. Further analysis is performed to find the optimal time to perform a maintenance task. The comparison between housekeeping, IBM and CBM is also discussed and presented.Practical implicationsThe literature on the classification of maintenance strategies for energy efficiency has been limited. On the other hand, the ISO 50001 energy management systems standard shows the importance of maintenance for energy efficiency (MFEE). Therefore, to bridge the gap between research and industry, the proposed concept and principle of maintenance strategies will be helpful for practitioners to apply maintenance strategies as energy conservation measures in implementing ISO 50001 standard.Originality/valueThe novelty of this paper is in-depth discussion on the concept and principle of each maintenance strategy (e.g. housekeeping or IBM, TBM and CBM) for energy efficiency. The relevant literature for each maintenance strategy was also summarized. In addition, basic rules for maintenance strategy selection are also proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality in Maintenance Engineering
Journal of Quality in Maintenance Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
4.00
自引率
13.30%
发文量
24
期刊介绍: This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance
期刊最新文献
Spare parts management in industry 4.0 era: a literature review Data-driven decision-making in maintenance management and coordination throughout the asset life cycle: an empirical study Joint maintenance planning and production scheduling optimization model for green environment Identification of optimal maintenance parameters for best maintenance and service management system in the SMEs Modeling and solving the multi-objective energy-efficient production planning and scheduling with imperfect maintenance activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1